 ### Update 14_doping_and_devices_solutions.md

parent b5504c08
 ... ... @@ -18,7 +18,7 @@ \$\$ n_e - n_h + n_D - n_A = N_D - N_A \$\$ \$\$ n_{e} = \frac{1}{2}(\sqrt{D^2+4n_i^2}+D)\$\$ \$\$ n_{h} = \frac{1}{2}(\sqrt{D^2+4n_i^2}-D)\$\$ where \$n_i=n_{e,intrinsic}=n_{h,intrinsic}\$. where \$D = N_D - N_A\$ and \$n_i=n_{e,intrinsic}=n_{h,intrinsic}\$. ### Subquestion 3 ... ... @@ -37,21 +37,19 @@ If all the dopants are ionized, the Fermi level gets shifted up towards the cond This result can be obtained when using results in Exercise 1 - Subquestion 2 and the following: \$\$ n_D \approx 0\$\$ \$\$ n_A \approx 0\$\$ \$\$ n_e - n_h = N_D - N_A \$\$ ### Subquestion 2 Now, \$\$ n_D^{\ast} = N_D (1-\frac{1}{e^({E_D-E_F})/k_BT+1})\$\$ \$\$ n_A^{\ast} = N_A (1-\frac{1}{e^({E_F-E_A})/k_BT+1})\$\$ \$\ast\$ indicates non-ionized concentrations. ### Subquestion 3 ??? hint "how?" Use Germianium Fermi Energy at room temperature and solve E_F via using the n_e solution in Exercise 1 and by applying the definition of n_e. Check [key algorithm of describing the state of a semiconductor](13_semiconductors/#part-1-pristine-semiconductor) Check [key algorithm of describing the state of a semiconductor](/13_semiconductors/#part-1-pristine-semiconductor) ## Exercise 3: Performance of a diode ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!