 ### Update 13_semiconductors_solutions.md

parent 9bfea0be
 ... @@ -32,6 +32,8 @@ force is perpendicular to $\nabla_\mathbf{k} E$. ... @@ -32,6 +32,8 @@ force is perpendicular to $\nabla_\mathbf{k} E$. A hole near the bottom of the conduction band will have the same chirality as an electron. A hole near the bottom of the conduction band will have the same chirality as an electron. The chirality would be just the opposite if we now consider the valence band (for both electrons and holes). The chirality would be just the opposite if we now consider the valence band (for both electrons and holes). ## Exercise 2: holes in Drude and tight binding model ## Exercise 2: holes in Drude and tight binding model ### Subquestion 1 ### Subquestion 1 ... @@ -46,7 +48,11 @@ When considering equal concentrations, $\rho_{xy}=0$. ... @@ -46,7 +48,11 @@ When considering equal concentrations, $\rho_{xy}=0$. ### Subquestion 3 ### Subquestion 3 The effective masses will be of opposite sign. The group velocities will be the same. $$m_e = -\frac{\hbar^2}{2ta^2cos(ka)}$$ $$v_e = -\frac{2tasin(ka)}{\hbar}$$ $$m_h = -m_e$$ $$v_h = v_e$$ The effective masses will be of opposite sign, while the group velocities will be the same! ### Subquestion 4 ### Subquestion 4 ... @@ -55,7 +61,10 @@ $$n_h = \int_{\varepsilon-2t}^{\varepsilon+2t} (1-f(\varepsilon)) g_h(\varepsil ... @@ -55,7 +61,10 @@$$ n_h = \int_{\varepsilon-2t}^{\varepsilon+2t} (1-f(\varepsilon)) g_h(\varepsil ### Subquestion 5 ### Subquestion 5 ## Exercise 3: ## Exercise 3: a 1D semiconductor python python def dispersion(EG, tcb, tvb, N=100, kmax=np.pi/2): def dispersion(EG, tcb, tvb, N=100, kmax=np.pi/2): ... ...
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment