From bd885029d90f5655bd87f272ca95d2e7b0b199fc Mon Sep 17 00:00:00 2001 From: Joseph Weston <joseph.weston08@gmail.com> Date: Mon, 11 Sep 2017 17:47:21 +0200 Subject: [PATCH] remove superfluous return value from 'prepare_for_lapack' --- kwant/linalg/decomp_ev.py | 2 +- kwant/linalg/decomp_lu.py | 6 +++--- kwant/linalg/decomp_schur.py | 14 +++++++------- kwant/linalg/lapack.pyx | 20 +++++++------------- 4 files changed, 18 insertions(+), 24 deletions(-) diff --git a/kwant/linalg/decomp_ev.py b/kwant/linalg/decomp_ev.py index 1d3bb587..8e7b95d6 100644 --- a/kwant/linalg/decomp_ev.py +++ b/kwant/linalg/decomp_ev.py @@ -50,5 +50,5 @@ def gen_eig(a, b, left=False, right=True, overwrite_ab=False): The right eigenvector corresponding to the eigenvalue ``alpha[i]/beta[i]`` is the column ``vr[:,i]``. """ - ltype, a, b = lapack.prepare_for_lapack(overwrite_ab, a, b) + a, b = lapack.prepare_for_lapack(overwrite_ab, a, b) return lapack.ggev(a, b, left, right) diff --git a/kwant/linalg/decomp_lu.py b/kwant/linalg/decomp_lu.py index ace2af08..639b547b 100644 --- a/kwant/linalg/decomp_lu.py +++ b/kwant/linalg/decomp_lu.py @@ -45,7 +45,7 @@ def lu_factor(a, overwrite_a=False): singular : boolean Whether the matrix a is singular (up to machine precision) """ - ltype, a = lapack.prepare_for_lapack(overwrite_a, a) + a = lapack.prepare_for_lapack(overwrite_a, a) return lapack.getrf(a) @@ -71,7 +71,7 @@ def lu_solve(matrix_factorization, b): "a singular matrix. Result of solve step " "are probably unreliable") - ltype, lu, b = lapack.prepare_for_lapack(False, lu, b) + lu, b = lapack.prepare_for_lapack(False, lu, b) ipiv = np.ascontiguousarray(np.asanyarray(ipiv), dtype=lapack.int_dtype) return lapack.getrs(lu, ipiv, b) @@ -102,5 +102,5 @@ def rcond_from_lu(matrix_factorization, norm_a, norm="1"): """ (lu, ipiv, singular) = matrix_factorization norm = norm.encode('utf8') # lapack expects bytes - ltype, lu = lapack.prepare_for_lapack(False, lu) + lu = lapack.prepare_for_lapack(False, lu) return lapack.gecon(lu, norm_a, norm) diff --git a/kwant/linalg/decomp_schur.py b/kwant/linalg/decomp_schur.py index af50f1e8..d6543213 100644 --- a/kwant/linalg/decomp_schur.py +++ b/kwant/linalg/decomp_schur.py @@ -62,7 +62,7 @@ def schur(a, calc_q=True, calc_ev=True, overwrite_a=False): LinAlgError If the underlying QR iteration fails to converge. """ - ltype, a = lapack.prepare_for_lapack(overwrite_a, a) + a = lapack.prepare_for_lapack(overwrite_a, a) return lapack.gees(a, calc_q, calc_ev) @@ -182,7 +182,7 @@ def order_schur(select, t, q, calc_ev=True, overwrite_tq=False): ``calc_ev == True`` """ - ltype, t, q = lapack.prepare_for_lapack(overwrite_tq, t, q) + t, q = lapack.prepare_for_lapack(overwrite_tq, t, q) # Figure out if select is a function or array. isfun = isarray = True @@ -255,7 +255,7 @@ def evecs_from_schur(t, q, select=None, left=False, right=True, ``right == True``. """ - ltype, t, q = lapack.prepare_for_lapack(overwrite_tq, t, q) + t, q = lapack.prepare_for_lapack(overwrite_tq, t, q) # check if select is a function or an array if select is not None: @@ -346,7 +346,7 @@ def gen_schur(a, b, calc_q=True, calc_z=True, calc_ev=True, LinAlError If the underlying QZ iteration fails to converge. """ - ltype, a, b = lapack.prepare_for_lapack(overwrite_ab, a, b) + a, b = lapack.prepare_for_lapack(overwrite_ab, a, b) return lapack.gges(a, b, calc_q, calc_z, calc_ev) @@ -408,7 +408,7 @@ def order_gen_schur(select, s, t, q=None, z=None, calc_ev=True, LinAlError If the problem is too ill-conditioned. """ - ltype, s, t, q, z = lapack.prepare_for_lapack(overwrite_stqz, s, t, q, z) + s, t, q, z = lapack.prepare_for_lapack(overwrite_stqz, s, t, q, z) # Figure out if select is a function or array. @@ -491,7 +491,7 @@ def convert_r2c_gen_schur(s, t, q=None, z=None): If it fails to convert a 2x2 block into complex form (unlikely). """ - ltype, s, t, q, z = lapack.prepare_for_lapack(True, s, t, q, z) + s, t, q, z = lapack.prepare_for_lapack(True, s, t, q, z) # Note: overwrite=True does not mean much here, the arrays are all copied if (s.ndim != 2 or t.ndim != 2 or @@ -611,7 +611,7 @@ def evecs_from_gen_schur(s, t, q=None, z=None, select=None, """ - ltype, s, t, q, z = lapack.prepare_for_lapack(overwrite_qz, s, t, q, z) + s, t, q, z = lapack.prepare_for_lapack(overwrite_qz, s, t, q, z) if left and q is None: raise ValueError("Matrix q must be provided for left eigenvectors") diff --git a/kwant/linalg/lapack.pyx b/kwant/linalg/lapack.pyx index 53fdaab2..e173bc0c 100644 --- a/kwant/linalg/lapack.pyx +++ b/kwant/linalg/lapack.pyx @@ -1274,8 +1274,7 @@ def prepare_for_lapack(overwrite, *args): If an argument is ``None``, it is just passed through and not used to determine the proper LAPACK type. - `prepare_for_lapack` returns a character indicating the proper LAPACK data - type ('s', 'd', 'c', 'z') and a list of properly converted arrays. + Returns a list of properly converted arrays. """ # Make sure we have NumPy arrays @@ -1296,18 +1295,10 @@ def prepare_for_lapack(overwrite, *args): # kind. dtype = np.common_type(*[arr for arr, ovwrt in mats if arr is not None]) - if dtype == np.float32: - lapacktype = 's' - elif dtype == np.float64: - lapacktype = 'd' - elif dtype == np.complex64: - lapacktype = 'c' - elif dtype == np.complex128: - lapacktype = 'z' - else: + if dtype not in (np.float32, np.float64, np.complex64, np.complex128): raise AssertionError("Unexpected data type from common_type") - ret = [ lapacktype ] + ret = [] for npmat, ovwrt in mats: # Now make sure that the array is contiguous, and copy if necessary. if npmat is not None: @@ -1332,4 +1323,7 @@ def prepare_for_lapack(overwrite, *args): ret.append(npmat) - return tuple(ret) + if len(ret) == 1: + return ret[0] + else: + return tuple(ret) -- GitLab