 ### move the plot out (breaks the list otherwise)

parent b693b770
 ... ... @@ -30,27 +30,29 @@ configure_plotting() 1. An ideal gas only contains 3 positional degrees of freedom. 2. $C = 2k_B$. 3. See image below (with $T_1 < T_2$) python fig, ax = plt.subplots() omega = np.linspace(0.1, 3) T = [1,2] ax.plot(omega, 1/(np.exp(omega/T) - 1), label = r'$T_1$') ax.plot(omega, 1/(np.exp(omega/T) - 1), label = r'$T_2$') ax.set_ylim([0,3]) ax.set_xlim([0,3]) ax.set_xlabel('$\hbar \omega$') ax.set_xticks() ax.set_xticklabels(['$0$']) ax.set_ylabel('$n_B$') ax.set_yticks([0,1, 2]) ax.set_yticklabels(['$0$','$1$', '$2$']) ax.legend() draw_classic_axes(ax, xlabeloffset=.2) fig.show();  4. Minus sign in the exponent. This would result in $n_B(T = 0) = -1$, which is not physical. 5. See plot with slider python fig, ax = plt.subplots() omega = np.linspace(0.1, 3) T = [1,2] ax.plot(omega, 1/(np.exp(omega/T) - 1), label = r'$T_1$') ax.plot(omega, 1/(np.exp(omega/T) - 1), label = r'$T_2$') ax.set_ylim([0,3]) ax.set_xlim([0,3]) ax.set_xlabel('$\hbar \omega$') ax.set_xticks() ax.set_xticklabels(['$0$']) ax.set_ylabel('$n_B$') ax.set_yticks([0,1, 2]) ax.set_yticklabels(['$0$','$1$', '$2$']) ax.legend() draw_classic_axes(ax, xlabeloffset=.2) fig.show();  ### Exercise 1: Heat capacity of a classical oscillator. 1.  ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!