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I. FORMULATION OF THE QUANTUM TRANSPORT PROBLEM AS A SET OF LINEAR
EQUATIONS

A. Scattering problem

Consider a system with a single lead (without loss of generality, several leads can be considered as one virtual lead)
with a Hamiltionian

H =


. . . VL

V †L HL VL

V †L HL VL

V †L HS

 (1)

where HL is the onsite Hamiltionian of the lead, VL the hopping between the lead unit cells, and HS the (big)
Hamiltionian of the scattering region.

We write a wave function as (. . . , ψL(2), ψL(1), ψS), where ψS is the wave function in the scattering region, and ψL

the wave function in the i-th unit cell away from the scattering region in the lead. Using translational invariance of
the lead we rewrite the wave function in the lead in terms of the eigenvectors of translation operator. Since the lead
is assumed only half-infinite, evanescent modes are allowed. The decomposition gives

ψL(j) = UΛjψL, (2)

with ψL the wave function in mode basis, Λ a diagonal matrix of translation eigenvalues, and U a matrix of translation
eigenvectors. We order the modes in the following manner: ψL = (ψin, ψout), with ψin modes incoming to the system,
and ψout contains outgoing and evanescent modes. Since we do not consider modes diverging at infinite, Λ is bounded
by one from above. Scattering problem is formulated as a matrix equation:

H

 1

S
ψS

 = 0, (3)

where we have set the excitation energy to 0 for brevity. Here S is the scattering matrix of propagating and evanescent
modes, and ψS the wave function inside the system. Writing down the tight binding equations for the scattering system
and the 0th unit cell of the lead yields

HSψS + V †LUoutΛoutS = −V †LUinΛin (4)

VLψS + (HLUoutΛout + V †LUoutΛ2
out)S = −(HLUinΛin + V †LUinΛ2

in). (5)

This is the system of equations which has to be solved. One straighforward simplification of Eq. (5) is possible using
the lead tight-binding equation:

VLU +HLUΛ + V †LUΛ2 = 0. (6)

substituting it into the Eq. (5) we get

VLψS − VLUoutS = VLUin. (7)

We proceed to discuss various optimizations and strategies of solving this sytem of equations. For now we not that
it is already very efficient to provide this system to existent blackbox sparse solvers.

B. Translation eigenvalues in the lead

C. Lead Hamiltonian and wave functions

We consider leads that are described by a unit cell Hamiltonian Hlead and a hopping from cell j to cell j + 1 Vlead.
The cells are numbered such that the index i increases as one moves away from the scattering region.
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Because of Bloch’s theorem, the lead eigenfunctions can be written as φ(j) = ueikj = uλ, where λ = eik (Note that
k can be complex, describing evanescent modes). The Schrödinger equation for the lead then reads

(Hlead − E)φ(j) + Vleadφ(j − 1) + V †leadφ(j + 1) =

(Hlead − E)u + Vleaduλ−1 + V †leaduλ = 0
(8)

A general wave function in the lead can then be written in a compact form as

ψ(j) = UoΛj
oa + UiΛ

j
i b (9)

where Uo/i is a matrix with all outgoing (going out of the scattering region into the lead)/incoming (going into the
scattering region) modes u in the columns. Λo,i is a diagonal matrix with the corresponding λ’s, and a and b are
vectors of amplitudes. Note that the choice of phase of a and b is arbitrary, here I chose them such that the phase
described by Λ vanishes at j = 0 which is the “unit cell” that is already in the scattering region.

D. Formulating the scattering problem as a linear system

Consider a system with a single lead (without loss of generality, several leads can be considered as one virtual lead)
with a Hamiltionian

H =


. . . VL

V †L HL − E VL

V †L HL − E VL

V †L HS − E

 (10)

where HL is the onsite Hamiltionian of the lead, VL the hopping between the lead unit cells, and HS the (big)
Hamiltionian of the scattering region.

We write a wave function as (. . . , ψL(2), ψL(1), ψS), where ψS is the wave function in the scattering region, and ψL

the wave function in the i-th unit cell away from the scattering region in the lead.
In the lead, the wave function can be written as

ψL(j) = UL,oΛj
L,oS + Λj

iUi,i (11)

with S the scattering matrix of the problem (including evanescent modes).
Using Eq. (11) we can rewrite the infinite Schroedinger equation in terms of S and ψS only. We have

V †LψL(2) + (HL − E)ψL(1) + VL,SψS =

(V †LUL,oΛ2
L,o + (HL − E)UL,oΛL,o) r + VL,SψS+

(V †Lλ
2
i + (HL − E)λi) ui,i .

(12)

Using Eq. (8) this equation can be simplified to

−VLUL,o r + VL,SψS = VLui,i . (13)

In the same fashion we can rewrite the remaining equations and arrive at a finite linear system:(
−VLUL,o VL

V †LUL,oΛL,o HS − E

)(
S
ψS

)
=
(

VLUi

−V †L,SλiUi

)
(14)

This formulation avoids the error-prone inversion of U . Note that since VR/L and VR/L,S are assumed to have the
same structure, the first and the last row have the same completely zero rows if the hopping does not connect to all
points of the unit cell.

E. Lead modes via current eigenstates

Since lead wave functions only enter the system



3

F. Open questions

• Can one get rid of the evanescent part of the t and r? Propbably with Schur complement method (eliminate
these variables). Not sure if it’s worth it.

• Connection to Green’s function formalism - most likely, if I eliminate the r and t’s completely, I end up again
with the self-energies (In fact, if Vlead is invertible, one sees it immediately. For singular hopping one probably
needs to work with an SVD decomposition, as the components of r corresponding to the zero singular values of
Vlead do not enter the equation). The other way round, to get this type of equation from the self-energies only
seems not possible.

• Assume for the sake of argument (in fact in practice this will most likely be not necessary) that I include a part of
the lead in the scattering region. In this case, the amplitudes of the fastest decaying modes will be exponentially
small, and it is a good approximation to neglect them all together. In terms of the linear system this means
taking out the columns corresponding to these modes. The resulting linear system is then overdetermined, and
will not have an exact solution any more (we did an approdximation!). Still the problem is well posed, as one
can look for the best approximation under the given contraints (least squares problem). There are in principle
dense (QR), sparse (sparse QR) and iterative (LSQR) methods for this problem. Instead of acting on the full
matrix, the special form makes it probably possible to act on the lead degrees of freedom only, and turn the
problem into a regular linear system.

One rationale for this approach would be to use iterative solvers for the lead modes (which is another problem,
that we didn’t solve very satisfactorily yet), where one would only calculate the modes with the longest decay
length.

Overall, this needs a bit more reading (never thought about least squares problems).
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