diff --git a/kwant/plotter.py b/kwant/plotter.py index 405cf2800134ee55cd650498f065b0026a003113..7e514613e5d9bc038e3b05366aec314adc3e8ff5 100644 --- a/kwant/plotter.py +++ b/kwant/plotter.py @@ -1554,6 +1554,14 @@ def spectrum(syst, x, y=None, params=None, mask=None, file=None, # Smoothing functions used with 'interpolate_current'. +# Convolution kernel with finite support: +# f(r) = (1-r^2)^2 Θ(1-r^2) +def _bump(r): + r[r > 1] = 1 + m = 1 - r * r + return m * m + + # We generate the smoothing function by convolving the current # defined on a line between the two sites with # f(Ï, z) = (1 - Ï^2 - z^2)^2 Θ(1 - Ï^2 - z^2), where Ï and z are @@ -1729,6 +1737,132 @@ def interpolate_current(syst, current, relwidth=None, abswidth=None, n=9): return field, ((region[0][0], region[0][-1]), (region[1][0], region[1][-1])) +def interpolate_density(syst, density, relwidth=None, abswidth=None, n=9): + """Interpolate density in a system onto a regular grid. + + The system sites together with a scalar for each site defines a "discrete" + density field where the density is non-zero only at the site positions. + + To make this vector field easier to visualize and interpret at different + length scales, it is smoothed by convoluting it with the bell-shaped bump + function ``f(r) = max(1 - (2*r / width)**2, 0)**2``. The bump width is + determined by the `relwidth` and `abswidth` parameters. + + This routine samples the smoothed field on a regular (square or cubic) + grid. + + Parameters + ---------- + syst : A finalized system + The system on which we are going to calculate the field. + density : '1D array of float' + Must contain the intensity on each site in the same order that they + appear in syst.sites. + relwidth : float or `None` + Relative width of the bumps used to generate the field, as a fraction + of the length of the longest side of the bounding box. This argument + is only used if `abswidth` is not given. + abswidth : float or `None` + Absolute width of the bumps used to generate the field. Takes + precedence over `relwidth`. If neither is given, the bump width is set + to four times the length of the shortest hopping. + n : int + Number of points the grid must have over the width of the bump. + + Returns + ------- + field : n-d arraylike of float + n-d array of n-d vectors. + box : sequence of 2-sequences of float + the extents of `field`: ((x0, x1), (y0, y1), ...) + + """ + if not isinstance(syst, builder.FiniteSystem): + raise TypeError("The system needs to be finalized.") + + if len(density) != len(syst.sites): + raise ValueError("Density and sites arrays do not have the same" + " length.") + + dim = len(syst.sites[0].pos) + sites = np.array([s.pos for s in syst.sites]) + + bbox_min = np.min(sites, axis=0) + bbox_max = np.max(sites, axis=0) + bbox_size = bbox_max - bbox_min + + # Determine the optimal width for the bump function + dirs = np.array([syst.sites[i].pos - syst.sites[j].pos + for i, j in syst.graph]) + lens = np.sqrt(np.sum(dirs * dirs, -1)) + if abswidth is None: + if relwidth is None: + unique_lens = np.unique(lens) + longest = unique_lens[-1] + for shortest_nonzero in unique_lens: + if shortest_nonzero / longest > 1e-3: + break + width = 4 * shortest_nonzero + else: + width = relwidth * np.max(bbox_size) + else: + width = abswidth + + # Define length scale in terms of the bump width. + scale = 2 / width + padding = width / 2 + lens *= scale + + # Create field array. + field_shape = np.zeros(dim + 1, int) + field_shape[dim] = 1 + for d in range(dim): + field_shape[d] = int(bbox_size[d] * n / width + n) + if field_shape[d] % 2: + field_shape[d] += 1 + field = np.zeros(field_shape) + + region = [np.linspace(bbox_min[d] - padding, + bbox_max[d] + padding, + field_shape[d]) + for d in range(dim)] + + grid_density = (field_shape[:dim] - 1) / (bbox_max + 2*padding - bbox_min) + + slices = np.empty((len(sites), dim, 2), int) + slices[:, :, 0] = np.floor((sites - bbox_min) * grid_density) + slices[:, :, 1] = np.ceil((sites + 2*padding - bbox_min) * grid_density) + + # Interpolate the field for each hopping. + for i in range(len(density)): + + if not np.diff(slices[i]).all() or not density[i]: + # Zero volume or zero density: nothing to do. + continue + + field_slice = [slice(*slices[i, d]) for d in range(dim)] + + # Coordinates of the grid points that are within range of the current + # hopping. + coords = np.meshgrid(*[region[d][field_slice[d]] for d in range(dim)], + sparse=True, indexing='ij') + + # Convert "coords" into distances from the site + coords -= sites[i] + r = np.sqrt(np.sum(coords * coords)) + r *= scale + + magns = _bump(r) + magns *= density[i] + + field[field_slice] += magns[..., None] + + field *= scale / _smoothing_cross_sections[dim - 1] + + # 'field' contains contributions from both hoppings (i, j) and (j, i) + return field, ((region[0][0], region[0][-1]), (region[1][0], region[1][-1])) + + def _gamma_compress(linear): """Compress linear sRGB into sRGB.""" if linear <= 0.0031308: