diff --git a/doc/source/pre/whatsnew/1.4.rst b/doc/source/pre/whatsnew/1.4.rst index ab00cd1418b5d5ed18f085a616f174af4088d14f..12c72b3b5227ce4344ff624dda200ffdb2cb4508 100644 --- a/doc/source/pre/whatsnew/1.4.rst +++ b/doc/source/pre/whatsnew/1.4.rst @@ -12,3 +12,14 @@ The function `~kwant.plotter.streamplot` has got a new option ``vmax``. Note that this option is not available in `~kwant.plotter.current`. In order to use it, one has to call ``streamplot`` directly as shown in the docstring of ``current``. + +Improved heuristic for colorscale limits in `kwant.plotter.map` +--------------------------------------------------------------- +Previously `~kwant.plotter.map` would set the limits for the color scale +to the extrema of the data being plotted when ``vmin`` and ``vmax`` were +not provided. This is the behaviour of ``matplotlib.imshow``. When the data +to be plotted has very sharp and high peaks this would mean that most of the +data would appear near the bottom of the color scale, and all of the features +would be washed out by the presence of the peak. Now `~kwant.plotter.map` +employs a heuristic for setting the colorscale when there are outliers, +and will emit a warning when this is detected. diff --git a/kwant/plotter.py b/kwant/plotter.py index a570214101e281df3f10db28416636077a8d4b94..405cf2800134ee55cd650498f065b0026a003113 100644 --- a/kwant/plotter.py +++ b/kwant/plotter.py @@ -97,6 +97,34 @@ def set_colors(color, collection, cmap, norm=None): collection.set_color(colors) +def percentile_bound(data, vmin, vmax, percentile=96, stretch=0.1): + """Return the bounds that captures at least 'percentile' of 'data'. + + If 'vmin' or 'vmax' are provided, then the corresponding bound is + exactly 'vmin' or 'vmax'. First we set the bounds such that the + provided percentile of the data is within them. Then we try to + extend the bounds to cover all the data, maximally stretching each + bound by a factor 'stretch'. + """ + if vmin is not None and vmax is not None: + return vmin, vmax + + percentile = (100 - percentile) / 2 + percentiles = (0, percentile, 100 - percentile, 100) + mn, bound_mn, bound_mx, mx = np.percentile(data.flatten(), percentiles) + + bound_mn = bound_mn if vmin is None else vmin + bound_mx = bound_mx if vmax is None else vmax + + # Stretch the lower and upper bounds to cover all the data, if + # we stretch the bound by less than a factor 'stretch'. + stretch = (bound_mx - bound_mn) * stretch + out_mn = max(bound_mn - stretch, mn) if vmin is None else vmin + out_mx = min(bound_mx + stretch, mx) if vmax is None else vmax + + return (out_mn, out_mx) + + symbol_dict = {'O': 'o', 's': ('p', 4, 45), 'S': ('P', 4, 45)} def get_symbol(symbols): @@ -1278,6 +1306,26 @@ def map(sys, value, colorbar=True, cmap=None, vmin=None, vmax=None, a=None, if cmap is None: cmap = _p._colormaps.kwant_red + # Calculate the min/max bounds for the colormap. + # User-provided values take precedence. + unmasked_data = img[~img.mask].data.flatten() + new_vmin, new_vmax = percentile_bound(unmasked_data, vmin, vmax) + overflow_pct = 100 * np.sum(unmasked_data > new_vmax) / len(unmasked_data) + underflow_pct = 100 * np.sum(unmasked_data < new_vmin) / len(unmasked_data) + if (vmin is None and underflow_pct) or (vmax is None and overflow_pct): + msg = ( + 'The plotted data contains ', + '{:.2f}% of values overflowing upper limit {:g} ' + .format(overflow_pct, new_vmax) + if overflow_pct > 0 else '', + 'and ' if overflow_pct > 0 and underflow_pct > 0 else '', + '{:.2f}% of values underflowing lower limit {:g} ' + .format(underflow_pct, new_vmin) + if underflow_pct > 0 else '', + ) + warnings.warn(''.join(msg), RuntimeWarning, stacklevel=2) + vmin, vmax = new_vmin, new_vmax + # Note that we tell imshow to show the array created by mask_interpolate # faithfully and not to interpolate by itself another time. image = ax.imshow(img.T, extent=(min[0], max[0], min[1], max[1]), @@ -1291,7 +1339,15 @@ def map(sys, value, colorbar=True, cmap=None, vmin=None, vmax=None, a=None, ax.patch.set_facecolor(background) if colorbar and fig is not None: - fig.colorbar(image) + # Make the colorbar ends pointy if we saturate the colormap + extend = 'neither' + if underflow_pct > 0 and overflow_pct > 0: + extend = 'both' + elif underflow_pct > 0: + extend = 'min' + elif overflow_pct > 0: + extend = 'max' + fig.colorbar(image, extend=extend) if fig is not None: return output_fig(fig, file=file, show=show)