diff --git a/doc/source/code/figure/ab_ring.py.diff b/doc/source/code/figure/ab_ring.py.diff index 50a10d1920c488552360b3bfc388d661da86d88f..c4fb178b462033ee9f0cdc906c4cfb5f349e403b 100644 --- a/doc/source/code/figure/ab_ring.py.diff +++ b/doc/source/code/figure/ab_ring.py.diff @@ -143,7 +143,7 @@ normalized_fluxes = [flux / (2 * pi) for flux in fluxes] data = [] for flux in fluxes: - smatrix = kwant.smatrix(syst, energy, args=[flux]) + smatrix = kwant.smatrix(syst, energy, params=dict(phi=flux)) data.append(smatrix.transmission(1, 0)) - pyplot.figure() diff --git a/doc/source/code/figure/closed_system.py.diff b/doc/source/code/figure/closed_system.py.diff index 5f9cc10122b239ebd33488bbc433868dbba02a55..6ad93be562a7e793ca1f825fa8af2ec5641ef114 100644 --- a/doc/source/code/figure/closed_system.py.diff +++ b/doc/source/code/figure/closed_system.py.diff @@ -68,7 +68,7 @@ energies = [] for B in Bfields: # Obtain the Hamiltonian as a dense matrix - ham_mat = syst.hamiltonian_submatrix(args=[B], sparse=True) + ham_mat = syst.hamiltonian_submatrix(params=dict(B=B), sparse=True) # we only calculate the 15 lowest eigenvalues ev = sla.eigsh(ham_mat.tocsc(), k=15, sigma=0, @@ -105,7 +105,7 @@ + size = (_defs.figwidth_in, _defs.figwidth_in) + # Calculate the wave functions in the system. - ham_mat = syst.hamiltonian_submatrix(sparse=True, args=[B]) + ham_mat = syst.hamiltonian_submatrix(sparse=True, params=dict(B=B)) evals, evecs = sorted_eigs(sla.eigsh(ham_mat.tocsc(), k=20, sigma=0)) # Plot the probability density of the 10th eigenmode. @@ -124,12 +124,12 @@ + size = (_defs.figwidth_in, _defs.figwidth_in) + # Calculate the wave functions in the system. - ham_mat = syst.hamiltonian_submatrix(sparse=True, args=[B]) + ham_mat = syst.hamiltonian_submatrix(sparse=True, params=dict(B=B)) evals, evecs = sorted_eigs(sla.eigsh(ham_mat.tocsc(), k=20, sigma=0)) # Calculate and plot the local current of the 10th eigenmode. J = kwant.operator.Current(syst) - current = J(evecs[:, 9], args=[B]) + current = J(evecs[:, 9], params=dict(B=B)) - kwant.plotter.current(syst, current, colorbar=False) + for extension in ('pdf', 'png'): + kwant.plotter.current( diff --git a/doc/source/code/figure/quantum_well.py.diff b/doc/source/code/figure/quantum_well.py.diff index 1c81f1c54c37e24e231b15d6144c3cac7207e54e..8b1be4bb17cd8513816464e1782381842961ab88 100644 --- a/doc/source/code/figure/quantum_well.py.diff +++ b/doc/source/code/figure/quantum_well.py.diff @@ -59,7 +59,7 @@ # Compute conductance data = [] for welldepth in welldepths: - smatrix = kwant.smatrix(syst, energy, args=[-welldepth]) + smatrix = kwant.smatrix(syst, energy, params=dict(pot=-welldepth)) data.append(smatrix.transmission(1, 0)) - pyplot.figure() diff --git a/doc/source/tutorial/discretize.rst b/doc/source/tutorial/discretize.rst index 1ed5015cd2203e100d1d4e4cf9f21ae283716f04..b5edb0157f8a4ba5c3542b525328a48d852a8d42 100644 --- a/doc/source/tutorial/discretize.rst +++ b/doc/source/tutorial/discretize.rst @@ -160,9 +160,9 @@ energy eigenstates: .. image:: /code/figure/discretizer_gs.* -Note in the above that we provided the function ``V`` to -``syst.hamiltonian_submatrix`` using ``params=dict(V=potential)``, rather than -via ``args``. +Note in the above that we pass the spatially varying potential *function* +to our system via a parameter called ``V``, because the symbol $V$ +was used in the intial, symbolic, definition of the Hamiltonian. In addition, the function passed as ``V`` expects two input parameters ``x`` and ``y``, the same as in the initial continuum Hamiltonian. diff --git a/doc/source/tutorial/spin_potential_shape.rst b/doc/source/tutorial/spin_potential_shape.rst index bcf95dacc7627cf3822474009480287802cc6889..02ac1fbad566ad8daa570f26677e86c3d83fd01d 100644 --- a/doc/source/tutorial/spin_potential_shape.rst +++ b/doc/source/tutorial/spin_potential_shape.rst @@ -184,10 +184,12 @@ Finally, we compute the transmission probability: :start-after: #HIDDEN_BEGIN_sqvr :end-before: #HIDDEN_END_sqvr -``kwant.smatrix`` allows us to specify a list, `args`, that will be passed as -additional arguments to the functions that provide the Hamiltonian matrix -elements. In this example we are able to solve the system for different depths -of the potential well by passing the potential value. We obtain the result: +``kwant.smatrix`` allows us to specify a dictionary, `params`, that contains +the additional arguments required by the Hamiltonian matrix elements. +In this example we are able to solve the system for different depths +of the potential well by passing the potential value (remember above +we defined our `onsite` function that takes a parameter named `pot`). +We obtain the result: .. image:: /code/figure/quantum_well_result.*