diff --git a/.gitignore b/.gitignore
index bef711342a1bcb4405f73807b49e53bb6ee622e5..749697f405f9470189cb00e0e664e0446ddc6a7e 100644
--- a/.gitignore
+++ b/.gitignore
@@ -1,6 +1,5 @@
 *~
 .ipynb_checkpoints
 site
-docs
 *.pyc
 __pycache__
diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml
new file mode 100644
index 0000000000000000000000000000000000000000..700bccf30b297f6f194553307b61890f4b7a696a
--- /dev/null
+++ b/.gitlab-ci.yml
@@ -0,0 +1,77 @@
+image: quantumtinkerer/research
+
+stages:
+  - build
+  - deploy
+
+build lectures:
+  stage: build
+  before_script:
+    - pip install -U mkdocs mkdocs-material python-markdown-math
+  script:
+    - mkdocs build
+  artifacts:
+    paths:
+      - site
+    expire_in: 1 week
+
+.prepare_deploy: &prepare_deploy
+  stage: deploy
+  only:
+    - branches@mathematics-for-quantum-physics/lectures
+  before_script:
+    ## Install ssh-agent if not already installed, it is required by Docker.
+    ## (change apt-get to yum if you use an RPM-based image)
+    - 'which ssh-agent || ( apt-get update -y && apt-get install openssh-client -y )'
+
+    ## Run ssh-agent (inside the build environment)
+    - eval $(ssh-agent -s)
+
+    ## Add the SSH key stored in SSH_PRIVATE_KEY variable to the agent store
+    ## We're using tr to fix line endings which makes ed25519 keys work
+    ## without extra base64 encoding.
+    ## https://gitlab.com/gitlab-examples/ssh-private-key/issues/1#note_48526556
+    - echo "$WEBSITE_UPLOAD_KEY" | tr -d '\r' | ssh-add - > /dev/null
+
+    ## Create the SSH directory and give it the right permissions
+    - mkdir -p ~/.ssh
+    - chmod 700 ~/.ssh
+    - ssh-keyscan tnw-tn1.tudelft.net >> ~/.ssh/known_hosts
+    - chmod 644 ~/.ssh/known_hosts
+  script:
+    - "rsync -rv site/* mathforquantum@tnw-tn1.tudelft.net:$DEPLOY_PATH"
+
+deploy master version:
+  <<: *prepare_deploy
+  only:
+    - master@mathematics-for-quantum-physics/lectures
+  variables:
+    DEPLOY_PATH: ""
+  environment:
+    name: $CI_COMMIT_REF_NAME
+    url: "https://mathforquantum.quantumtinkerer.tudelft.nl"
+
+deploy test version:
+  <<: *prepare_deploy
+  except:
+    - master@mathematics-for-quantum-physics/lectures
+  variables:
+    DEPLOY_PATH: "test_builds/$CI_COMMIT_REF_NAME"
+  environment:
+    name: $CI_COMMIT_REF_NAME
+    url: "https://mathforquantum.quantumtinkerer.tudelft.nl/test_builds/$CI_COMMIT_REF_NAME"
+    on_stop: undeploy test version
+
+undeploy test version:
+  <<: *prepare_deploy
+  except:
+    - master@mathematics-for-quantum-physics/lectures
+  when: manual
+  variables:
+    DEPLOY_PATH: "test_builds/$CI_COMMIT_REF_NAME"
+  script:
+    - mkdir empty/
+    - "rsync -rlv --delete empty/ mathforquantum@tnw-tn1.tudelft.net:$DEPLOY_PATH"
+  environment:
+    name: $CI_COMMIT_REF_NAME
+    action: stop
diff --git a/README.md b/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..b9774c346712120a8b61ebd324240cb2d39682e4
--- /dev/null
+++ b/README.md
@@ -0,0 +1,47 @@
+# Mathematics for Quantum Physics
+Lecture notes and teaching material used for the Delft University of Technology course TN3105.
+
+The compiled materials are available at https://mathforquantum.quantumtinkerer.tudelft.nl
+
+# Origin and technical support
+
+This repository is based on a template for publishing lecture notes, developed
+by Anton Akhmerov, who also hosts such repositories for other courses.
+
+# Version
+
+This a minimal stable version of the website from the branch "enabling search" based on mkdocs-material with a funcitoning website-wide search (without the support for inline jupyter notebook conversion by thebe)
+
+# HOWTOs
+
+## How to add new material to the lecture notes
+
+1. First, create a new merge request. In this way, your edits
+   will be pushed to a separate folder, and not directly appear on the website.
+   
+   Detailed information on how to create a merge request can be found
+   [here](https://docs.gitlab.com/ee/user/project/merge_requests/creating_merge_requests.html), but in most cases these two simple steps are sufficient:
+    - create a new branch in the repository on gitlab (either using the gitlab UI, or on the command line and then push to gitlab)
+    - on top of the gitlab page you will see a blue "Create merge request" button associated with your new branch. Fill out the information, and don't forget to
+start the name of the merge request with "WIP:"
+
+2. Write the new material using [markdown](https://en.wikipedia.org/wiki/Markdown#Example). The markdown files are stored in the `src` folder and have the
+ending `.md`. In particular, in markdown you can
+    - write math using latex syntax. `$...$` is used for math in the text,
+      `$$...$$` for separate equations.
+    - highlight certain blocks using the `!!!` syntax. For examples, use
+      ```
+      !!! check "Example: optional title"
+          The text of the example (could have math in it
+	        $f(x)$), which must be indented by 4 spaces
+      ```
+      Other useful blocks are `!!! warning` and `!!! info`
+
+3. Place figures in `docs/figures`
+
+4. If you added a new markdown file that should be linked in the index, you need
+   to add it to `mkdocs.yml` under the `nav:` entry.
+
+5. Whenever you push a commit to the branch/merge request, it will automatically be deployed on a preview webpage. This process may take a few minutes. You can find the preview website by going to your merge request. There will be on top a box with the label "Pipeline", and in the box a button "View app". Clicking on "View app" will bring you to the preview webpage.
+
+6. When you are done with the merge request, remove "Draft:" from the title, and notify an instructor.
diff --git a/docs/1_complex_numbers.md b/docs/1_complex_numbers.md
new file mode 100644
index 0000000000000000000000000000000000000000..60abfdc0d025242c08e00de46cda96125266a085
--- /dev/null
+++ b/docs/1_complex_numbers.md
@@ -0,0 +1,319 @@
+---
+title: Complex Numbers
+---
+
+# 1. Complex Numbers
+
+The lecture on complex numbers consists of three parts, each with their own video:
+
+- [1.1. Definition and basic operations](#11-definition-and-basic-operations)
+- [1.2. Complex functions](#12-complex-functions)
+- [1.3. Differentiation and integration](#13-differentiation-and-integration)
+
+**Total video length: 38 minutes and 53 seconds**
+
+## 1.1 Definition and basic operations
+
+<iframe width="100%" height=315 src="https://www.youtube-nocookie.com/embed/fLMdaMuEp8s?rel=0" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
+
+### Complex numbers 
+!!! info "Definition I"
+    Complex numbers are numbers of the form $$z = a + b {\rm i}.$$ 
+    Here $\rm i$ is the square root of -1: $${\rm i} = \sqrt{-1},$$ 
+    or equivalently: $${\rm i}^2 = -1.$$
+
+Usual operations on numbers have their natural extension for complex
+numbers, as we shall see below.
+
+Some useful definitions:
+
+!!! info "Definition II" 
+    For a complex number $z = a + b {{\rm i}}$, $a$ is called the *real part*, and $b$ the *imaginary part*.
+
+!!! info "Complex conjugate"
+    The *complex conjugate* $z^*$ of $z = a + b {{\rm i}}$ is defined as
+    $$z^* = a - b{{\rm i}},$$ 
+
+i.e., taking the complex conjugate means flipping the sign of the imaginary part.
+
+### Addition
+
+!!! info "Addition"
+    For two complex numbers, $z_1 = a_1 + b_1 {{\rm i}}$ and $z_2 = a_2 + b_2 {{\rm i}}$, 
+    the sum $w = z_1 + z_2$ is given as 
+    $$w = w_1 + w_2 {{\rm i}}= (a_1 + a_2) + (b_1 + b_2) {{\rm i}}$$ 
+
+where the parentheses in the rightmost expression have been added to group the real and the imaginary part. A consequence of this definition is that the sum of a complex number and its complex conjugate is real:
+$$z + z^* = a + b {{\rm i}}+ a - b {{\rm i}}= 2a,$$ i.e., this results in twice the real part of $z$. 
+
+Similarly, subtracting $z^*$ from $z$ yields $$z - z^* = a + b {{\rm i}} - a + b {{\rm i}}= 2b{\rm i},$$ i.e., twice the imaginary part of $z$ (times $\rm i$).
+
+### Multiplication
+
+!!! info "Multiplication"
+    For the same two complex numbers $z_1$ and $z_2$ as above, their product is calculated as
+    $$w = z_1 z_2 = (a_1 + b_1 {{\rm i}}) (a_2 + b_2 {{\rm i}}) = (a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1) {{\rm i}},$$
+    where the parentheses have again beèn used to indicate the real and imaginary parts.
+
+A consequence of this definition is that the product of a complex number
+$z = a + b {{\rm i}}$ with its conjugate is real:
+$$z z^* = (a+b{{\rm i}})(a-b{{\rm i}}) = a^2 + b^2.$$ 
+The square root of this number is called the *norm* $|z|$ of $z$:
+$$|z| = \sqrt{z z^*} = \sqrt{a^2 + b^2}.$$
+
+### Division
+
+The quotient $z_1/z_2$ of two complex numbers $z_1$ and $z_2$ defined above can be evaluated by multiplying the numerator and denominator by the complex conjugate of $z_2$:
+!!! info "Division"
+    $$\frac{z_1}{z_2} = \frac{z_1 z_2^*}{z_2 z_2^*} = \frac{(a_1 a_2 + b_1 b_2) + (-a_1 b_2 + a_2 b_1) {{\rm i}}}{a_2^2 + b_2^2}.$$
+
+Try this yourself!
+
+!!! check "Example:"
+    $$\begin{align} 
+    \frac{1 + 2{\rm i}}{1 - 2{\rm i}} &= \frac{(1 + 2{\rm i})(1 + 2{\rm i})}{1^2 + 2^2} = \frac{1+4{\rm i} -4}{5}\\
+    & = -\frac{3}{5} + {\rm i} \frac{4}{5}
+    \end{align}$$
+
+### Visualization: the complex plane
+
+Complex numbers can be rendered on a two-dimensional (2D) plane, the
+*complex plane*. This plane is spanned by two unit vectors, one
+horizontal representing the real number 1 and the vertical
+unit vector representing ${\rm i}$.
+
+<figure markdown>
+  ![image](figures/complex_numbers_5_0.svg)
+  <figcaption>The norm of $z$ is the length of its vector spanned in the complex plane.</figcaption>
+</figure>
+
+#### Addition in the complex plane
+
+Adding two numbers in the complex plane corresponds to adding their
+respective horizontal and vertical components:
+
+<figure markdown>
+  ![image](figures/complex_numbers_8_0.svg)
+  <figcaption>The sum of two complex numbers is found as the diagonal of a parallelogram spanned by the vectors of those two numbers.</figcaption>
+</figure>
+
+## 1.2. Complex functions
+
+<iframe width="100%" height=315 src="https://www.youtube-nocookie.com/embed/7XtR_wDSqRc?rel=0" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
+
+
+Real functions can (most of the times) be written in terms of a Taylor series expanded at a point $x_{0}$:
+$$f(x) = \sum \limits_{n=0}^{\infty} \frac{f^{(n)}(x_{0})}{n!} (x-x_{0})^{n}$$
+We can write something similar for complex functions by replacing the *real* variable $x$ with its *complex* counterpart $z$:
+$$f(z) = \sum \limits_{n=0}^{\infty} \frac{f^{(n)}(x_{0})}{n!} (z-x_{0})^{n}$$
+
+For this course, the most important function is the *complex exponential function*, at which we will have a closer look below.
+
+### The complex exponential function
+The complex exponential is used *extremely often*. 
+It occurs in Fourier transforms and it is very convenient for doing calculations involving cosines and sines. 
+It also makes many common operations on complex number a lot easier to perform.
+
+!!! info "The exponential function and Euler identity"
+    The exponential function $f(z) = \exp(z) = e^z$ is defined as:
+    $$\exp(z) = e^{x + {\rm i}y} = e^{x} e^{{\rm i} y} = e^{x} \left( \cos y + {\rm i} \sin y\right).$$
+The last expression is called the *Euler identity*.
+
+!!! note "**Exercise**" 
+    Check that this function obeys
+    $$\exp(z_1) \exp(z_2) = \exp(z_1 + z_2).$$ 
+    *You will need sum and difference formulas of cosine and sine.*
+
+### The polar form
+
+A complex number $z$ can be represented by two real numbers, $a$ and $b$, which correspond to the real and imaginary part of the complex number.
+Another representation of $z$ is a *vector* in the complex plane with a horizontal component that corresponds to the real part of $z$ and a vertical component that corresponds to the imaginary part of $z$. 
+It is also possible to characterize that vector by its *length* and *direction*, where the latter can be represented by the
+angle that the vector makes with the horizontal axis:
+
+<figure markdown>
+  ![image](figures/complex_numbers_10_0.svg)
+  <figcaption>The angle with the horizontal axis is denoted by $\varphi$ 
+  like in the case of conventional polar coordinates, 
+  but in the context of complex numbers, this angle is called as the <b>argument</b>.</figcaption>
+</figure>
+
+!!! info "Polar form of complex numbers"
+    A complex number can be represented either by its real and imaginary part 
+    corresponding to the Cartesian coordinates in the complex plane,
+    or by its *norm* and its *argument* corresponding to polar coordinates. 
+    The norm is the length of the vector, and the argument is the angle it makes with the horizontal axis.
+
+We can conclude that for a complex number $z = a + b {\rm i}$, its real and imaginary parts
+can be expressed  in polar coordinates as $$a = |z| \cos\varphi$$ $$b = |z| \sin\varphi$$
+
+!!! info "Inverse equations"
+    The inverse equations are $$|z| = \sqrt{a^2 + b^2}$$
+    $$\varphi = \arctan(b/a)$$ for $a>0$. 
+    In general:
+    $$\varphi = \begin{cases} \arctan(b/a) &{\rm for ~} a>0; \\
+    \pi + \arctan(b/a) & {\rm for ~} a<0 {\rm ~ and ~} b>0;\\
+    -\pi + \arctan(b/a) &{\rm for ~} a<0 {\rm ~ and ~} b<0. \end{cases}$$ 
+ 
+It turns out that by using the magnitude $|z|$ and phase $\varphi$, we can write any complex number as
+$$z = |z| e^{{\rm i} \varphi}$$
+By increasing $\varphi$ by $2 \pi$, we make a full circle around the origin and reach the same point on the complex plane. In other words, by adding $2 \pi$ to the argument of $z$, we get the same complex number $z$!
+As a result, the argument $\varphi$ is defined up to $2 \pi$, and we are free to make any choice we like, such as in the examples in the figure below:
+
+<figure markdown>
+  ![image](figures/complex_numbers_11_0.svg)
+  <figcaption> $-\pi < \varphi < \pi$ (left) and (right) $-\frac{\pi}{2} < \varphi < \frac{3 \pi}{2}$ </figcaption>
+</figure>
+
+Some useful values of the complex exponential to know by heart are:
+
+!!! tip "Useful identities:"
+    $$e^{2{\rm i } \pi} = 1$$
+    $$e^{{\rm i} \pi} = -1 $$ 
+    $$e^{{\rm i} \pi/2} = {\rm i}$$
+    From the first expression, it also follows that 
+    $$e^{{\rm i} (y + 2\pi n)} = e^{{\rm i}y} {\rm ~ for ~} n \in \mathbb{Z}$$
+    As a result, $y$ is only defined up to $2\pi$.  
+
+Furthermore, we can define the sine and cosine in terms of complex exponentials:
+
+!!! info "Complex sine and cosine"
+    $$\cos(x) = \frac{e^{{\rm i} x} + e^{-{\rm i} x}}{2}$$
+    $$\sin(x) = \frac{e^{{\rm i} x} - e^{-{\rm i} x}}{2i}$$
+
+Most operations on complex numbers become easier when complex numbers are converted to their *polar form* using the complex exponential.
+Some functions and operations, which are common in real analysis, can be easily derived for their complex counterparts by substituting the real variable $x$ with the complex variable $z$ in its polar form:
+!!! info "Examples of some complex functions stated using polar form"
+    $$z^{n} = \left(r e^{{\rm i} \varphi}\right)^{n} = r^{n} e^{{\rm i} n \varphi}$$
+    $$\sqrt[n]{z} = \sqrt[n]{r e^{{\rm i} \varphi} } = \sqrt[n]{r} e^{{\rm i}\varphi/n} $$
+    $$\log(z) = log \left(r e^{{\rm i} \varphi}\right) = log(r) + {\rm i} \varphi$$
+    $$z_{1}z_{2} = r_{1} e^{{\rm i} \varphi_{1}} r_{2} e^{{\rm i} \varphi_{2}} = r_{1} r_{2} e^{{\rm i} (\varphi_{1} + \varphi_{2})}$$
+
+Use of polar form lets us notice immediately that for example, as a result of multiplication, the norm of the new number is the *product* of the norms of the multiplied numbers and its argument is the *sum* of the arguments of the multiplied numbers. 
+
+In the complex plane, this looks as follows:
+
+<figure markdown>
+  ![image](figures/complex_numbers_12_0.svg)
+  <figcaption></figcaption>
+</figure>
+
+!!! check "Example: Find all solutions solving $z^4 = 1$."
+    Of course, we know that $z = \pm 1$ are two solutions, but which other solutions are possible? We take a systematic approach:
+    $$\begin{align} z = e^{{\rm i} \varphi} & \Rightarrow z^4 = e^{4{\rm i} \varphi} = 1 \\
+    & \Leftrightarrow 4 \varphi = n 2 \pi \\
+    & \Leftrightarrow \varphi = 0, \varphi = \frac{\pi}{2}, \varphi = -\frac{\pi}{2}, \varphi = \pi \\
+    & \Leftrightarrow z = 1, z = i, z = -i, z = -1 \end{align}$$
+
+## 1.3. Differentiation and integration
+
+<iframe width="100%" height=315 src="https://www.youtube-nocookie.com/embed/JyftSqmmVdU?rel=0" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
+
+
+**We only consider differentiation and integration over *real* variables.** 
+
+We can then regard the complex ${\rm i}$ as another constant, and use our usual differentiation and integration rules:
+!!! info "Differentiation and Integration rules"
+    $$\frac{d}{d\varphi} e^{{\rm i} \varphi} = e^{{\rm i} \varphi} \frac{d}{d\varphi} ({\rm i} \varphi) ={\rm i} e^{{\rm i} \varphi} .$$
+    $$\int_{0}^{\pi} e^{{\rm i} \varphi} = \frac{1}{{\rm i}} \left[ e^{{\rm i} \varphi} \right]_{0}^{\pi} = -{\rm i}(-1 -1) = 2 {\rm i}$$
+
+## 1.4. Bonus: the complex exponential function and trigonometry
+
+Let us show some tricks in the following examples where the simple properties of the exponential
+function help in re-deriving trigonometric identities.
+
+!!! example "Properties of the complex exponential function I"
+    Take $|z_1| = |z_2| = 1$, and $\arg{(z_1)} = \varphi_1$ and
+    $\arg{(z_2)} = \varphi_2$. 
+    It is easy to see then that $z_i = \exp({\rm i} \varphi_i)$, $i=1, 2$. Then:
+    $$z_1 z_2 = \exp[{\rm i} (\varphi_1 + \varphi_2)].$$ 
+    The left hand side can be written as
+    $$\begin{align}
+    z_1 z_2 & = \left[ \cos(\varphi_1) + {\rm i} \sin(\varphi_1) \right] \left[ \cos(\varphi_2) + {\rm i} \sin(\varphi_2) \right] \\
+    & = \cos\varphi_1 \cos\varphi_2 - \sin\varphi_1 \sin\varphi_2 + {\rm i} \left( \cos\varphi_1 \sin\varphi_2 + 
+    \sin\varphi_1 \cos\varphi_2 \right).
+    \end{align}$$
+
+    Also, the right hand side can be written as
+    $$\exp[{\rm i} (\varphi_1 + \varphi_2)] = \cos(\varphi_1 + \varphi_2) + {\rm i} \sin(\varphi_1 + \varphi_2).$$
+    Comparing the two expressions, equating their real and imaginary parts, we find
+    $$\cos(\varphi_1 + \varphi_2) = \cos\varphi_1 \cos\varphi_2 - \sin\varphi_1 \sin\varphi_2;$$
+    $$\sin(\varphi_1 + \varphi_2) = \cos\varphi_1 \sin\varphi_2 + 
+    \sin\varphi_1 \cos\varphi_2.$$ 
+    Note that we used the Euler formula in order to derive the identities of trigonometric function.
+    The point is to show you that you can use the properties of the complex exponential to quickly find the form of trigonometric formulas, which are often easily forgotten.
+
+!!! example "Properties of the complex exponential function II" 
+    In this example, let's see what we can learn from the derivative of the exponential function:
+    $$\frac{d}{d\varphi} \exp({\rm i} \varphi) = {\rm i} \exp({\rm i} \varphi) .$$
+    Writing out the exponential in terms of cosine and sine, we see that
+    $$\cos'\varphi + {\rm i} \sin'\varphi = {\rm i} \cos\varphi - \sin\varphi.$$
+    where the prime $'$ denotes the derivative as usual. Equating real and imaginary parts leads to 
+    $$\cos'\varphi = - \sin\varphi;$$
+    $$\sin'\varphi = \cos\varphi.$$
+
+## 1.5. Summary
+
+1.  A complex number $z$ has the form $$z = a + b \rm i$$ where $a$ and
+    $b$ are both real, and $\rm i^2 = 1$. The real number $a$ is called
+    the *real part* of $z$ and $b$ is the *imaginary part*. Two complex
+    numbers can be added, subtracted and multiplied straightforwardly.
+    The quotient of two complex numbers $z_1=a_1 + \rm i b_1$ and
+    $z_2=a_2 + \rm i b_2$ is
+    $$\frac{z_1}{z_2} = \frac{z_1 z_2^*}{z_2 z_2^*} = \frac{(a_1 a_2 + b_1 b_2) + (-a_1 b_2 + a_2 b_1) {{\rm i}}}{a_2^2 + b_2^2}.$$
+
+2.  Complex numbers can also be characterised by their *norm*
+    $|z|=\sqrt{a^2+b^2}$ and *argument* $\varphi$. These parameters
+    correspond to polar coordinates in the complex plane. For a complex
+    number $z = a + b {\rm i}$, its real and imaginary parts can be
+    expressed as $$a = |z| \cos\varphi$$ $$b = |z| \sin\varphi$$ The
+    inverse equations are $$|z| = \sqrt{a^2 + b^2}$$
+    $$\varphi = \begin{cases} \arctan(b/a) &{\rm for ~} a>0; \\
+     \pi + \arctan(b/a) & {\rm for ~} a<0 {\rm ~ and ~} b>0;\\
+     -\pi + \arctan(b/a) &{\rm ~ for ~} a<0 {\rm ~ and ~} b<0.
+     \end{cases}$$
+    The complex number itself then becomes
+    $$z = |z| e^{{\rm i} \varphi}$$
+
+3.  The most important complex function for us is the complex exponential function, which simplifies many operations on complex numbers
+    $$\exp(z) = e^{x + {\rm i}y} = e^{x} \left( \cos y + {\rm i} \sin y\right).$$
+    where $y$ is defined up to $2 \pi$.\\
+    The $\sin$ and $\cos$ can be rewritten in terms of this complex exponential as
+    $$\cos(x) = \frac{e^{{\rm i} x} + e^{-{\rm i} x}}{2}$$
+    $$\sin(x) = \frac{e^{{\rm i} x} - e^{-{\rm i} x}}{2i}$$
+    Because we only consider *differentiation* and *integration* over *real variables*, the usual rules apply:
+    $$\frac{d}{d\varphi} e^{{\rm i} \varphi} = e^{{\rm i} \varphi} \frac{d}{d\varphi} ({\rm i} \varphi) ={\rm i} e^{{\rm i} \varphi} .$$
+    $$\int_{0}^{\pi} e^{{\rm i} \varphi} = \frac{1}{{\rm i}} \left[ e^{{\rm i} \varphi} \right]_{0}^{\pi} = -{\rm i}(-1 -1) = 2 {\rm i}$$
+
+## 1.6. Problems
+
+1.  [:grinning:] Given $a=1+2\rm i$ and $b=-3+4\rm i$, calculate and draw in the complex plane the numbers:
+    1.  $a+b$,
+    2.  $ab$, 
+    3.  $b/a$.
+
+2.  [:grinning:] Evaluate:  
+    1. $\rm i^{1/4}$, 
+    2. $\left(1+\rm i \sqrt{3}\right)^{1/2}$,
+    3. $\exp(2\rm i^3)$.
+
+3.  [:grinning:] Find the three 3rd roots of $1$ and ${\rm i}$. </br>
+    (i.e. all possible solutions to the equations $x^3 = 1$ and $x^3 = {\rm i}$, respectively).
+
+4.  [:grinning:] *Quotients*</br>
+    1. Find the real and imaginary part of $$ \frac{1+ {\rm i}}{2+3{\rm i}} \, .$$
+    2. Evaluate for real $a$ and $b$:$$\left| \frac{a+b\rm i}{a-b\rm i} \right| \, .$$ 
+
+5.  [:sweat:] For any given complex number $z$, we can take the inverse $\frac{1}{z}$. 
+    1.  Visualize taking the inverse in the complex plane. 
+    2.  What geometric operation does taking the inverse correspond to? </br>
+    (Hint: first consider what geometric operation $\frac{1}{z^*}$ corresponds to.)
+
+6.  [:grinning:]  *Differentation and integration* </br>
+    1. Compute $$\frac{d}{dt} e^{{\rm i} (kx-\omega t)},$$
+    2. Calculate the real part of $$\int_0^\infty e^{-\gamma t  +\rm i \omega t} dt$$ 
+    ($k$, $x$, $\omega$, $t$ and $\gamma$ are real; $\gamma$ is positive).
+
+7.  [:smirk:] Compute by making use of the Euler identity.
+    $$\int_{0}^{\pi}\cos(x)\sin(2x)dx$$
+    
diff --git a/docs/2_coordinates.md b/docs/2_coordinates.md
new file mode 100644
index 0000000000000000000000000000000000000000..6022b3c0511ac8634f05aecacaa5734085b599f5
--- /dev/null
+++ b/docs/2_coordinates.md
@@ -0,0 +1,472 @@
+---
+title: Coordinates
+---
+# 2. Coordinate systems
+
+The lecture on coordinate systems consists of 3 parts, each with their own video:
+
+- [2.1. Introduction to coordinate systems: Cartesian and polar](#21-introduction-to-coordinate-systems-cartesian-and-polar)
+- [2.2. Converting derivatives between coordinate systems](#22-converting-derivatives-between-coordinate-systems)
+- [2.3. Coordinate systems in 3D](#23-coordinate-systems-in-3d)
+
+**Total video length: 35 minutes and 13 seconds**
+
+## 2.1. Introduction to coordinate systems: Cartesian and polar
+
+<iframe width="100%" height=315 src="https://www.youtube-nocookie.com/embed/CPMrsQlNxS8?rel=0" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
+
+### Cartesian coordinates
+
+The most common coordinates are *Cartesian coordinates*, where we use a
+number $n$ of perpendicular axes. The coordinates corresponding to these
+axes are $x_j$ where $j=1, \ldots, n$.
+
+Cartesian coordinates are simple to describe and operate on. The coordinate axes are 
+straight lines perpendicular to each other. It is therefore
+very easy to do calculations in Cartesian coordinates. For example,
+the distance $\Delta s$ between two points $(x_1, x_2, \ldots, x_n)$
+and $(x'_1, x'_2, \ldots, x'_n)$ can be quickly computed using a general formula for n-dimensions:
+
+$$\Delta s^2 = (x'_1 - x_1)^2 + (x'_2 - x_2)^2 + \ldots + (x'_n - x_n)^2.$$
+
+(A space with such a distance definition is called an *Euclidean
+space*.)
+
+In mathematics, we are often dealing with so-called *infinitesimally* small
+distances, for example in the definition of derivatives and integrals.
+In Cartesian coordinates, the expressions for infinitesimal distances $ds$ and
+infinitesimal volumes $dV$ are given as:
+
+!!! info "Infinitesimal segment and volume elements in n-dimensional Cartesian coordinates"
+    $$ds = \sqrt{dx_1^2 + dx_2^2 + \ldots + dx_n^2}$$
+    $$dV = dx_1 dx_2 \ldots dx_N.$$
+
+The formula for $dV$ also indicates that in Cartesian coordinates, the integral
+over a volume can be expressed as individual integrals over all coordinate directions:
+$$\int dV = \idotsint dx_1 dx_2 \ldots dx_N$$.
+
+Cartesian coordinates are used a lot and they are particularly suitable for
+infinite spaces or for rectangular volumes.
+
+<figure markdown>
+  ![image](figures/Coordinates_5_1.svg)
+  <figcaption>An example of a vector drawn in a 2D Cartesian plane</figcaption>
+</figure>
+
+### Polar coordinates
+
+#### Definition
+
+It often turns out that a change to a different type of coordinate
+system makes mathematics easier. For example, if you want to describe vibrations of a
+circular drum, polar coordinates become very convenient. These are
+defined for a two-dimensional space (a plane). The position on this plane is characterised by two
+coordinates: the *distance* $r$ between the point and the origin, and by the
+angle ($\varphi$) between the line connecting the point to the origin and the $x$-axis. The radius is therefore always a non-negative number $r \geq 0$, and the range for the polar angle is $\varphi \in \left< 0,2\pi \right)$
+
+Note that each Cartesian coordinate has a *dimension* of length. 
+In polar coordinates, the radius $r$ has a dimension of *length*, but
+the angular coordinate $\varphi$ is dimensionless.
+
+<figure markdown>
+  ![image](figures/Coordinates_7_0.svg)
+  <figcaption>In this example of a polar plot, you can distinguish the radial coordinate (0.2, 0.4 etc.) from the angular one expressed in degrees ($0^\circ$, $45^\circ$ etc.).</figcaption>
+</figure>
+
+
+The plot below shows a point on a curve with the polar coordinates
+$(r,\varphi)$ indicated. From this, we can see that the *Cartesian*
+coordinates $(x,y)$ of the point are related to the polar ones as
+follows:
+
+$$\begin{equation} x = r \cos\varphi; \end{equation}$$
+$$\begin{equation} y = r \sin \varphi.\end{equation}$$
+
+<figure markdown>
+  ![image](figures/Coordinates_9_0.svg)
+  <figcaption></figcaption>
+</figure>
+
+#### The inverse relation
+
+!!! info "Inverse relation between polar and Cartesian coordinate systems"
+    \begin{equation} r=\sqrt{x^2 + y^2}; \label{rxy}\end{equation}
+    \begin{equation} \varphi=\begin{cases}
+    \arctan(y/x) & \text{$x>0$,}\\
+    \pi + \arctan(y/x) & \text{$x<0$ and $y>0$,}\\
+    -\pi + \arctan(y/x) & \text{$x<0$ and $y<0$.}
+    \end{cases} \label{phixy}\end{equation}
+
+The last formula for $\varphi$ warrants a closer explanation: It is easy
+to see that $\tan(\varphi)=y/x$, but this is not a unique relation, due to
+the fact that the $\tan$ has different branches. Convince yourself that
+the expression above is correct for all the four sectors!
+
+#### Distances and areas
+
+Now suppose we want to calculate the distance between two points, one
+with polar coordinates $(r_1, \varphi_1)$, and the other with
+$(r_2, \varphi_2)$. This looks like a difficult exercise. One possible
+way to perform this is by translating the polar coordinates into
+Cartesian coordinates and using the expression given above for this
+distance: $$\Delta s^2 = (x_1 - x_2)^2 + (y_1 - y_2)^2,$$ so
+$$\Delta s^2 = (r_1\cos\varphi_1 - r_2 \cos \varphi_2)^2 + (r_1\sin\varphi_1 - r_2 \sin \varphi_2)^2$$
+which is not a very convenient expression.
+
+If we consider two points which are *very close*, the analysis
+simplifies however. We can use the geometry of the problem to find the
+distance (see the figure below).
+
+<figure markdown>
+  ![image](figures/Coordinates_11_0.svg)
+  <figcaption></figcaption>
+</figure>
+
+When going from point 1 to point 2, we first traverse a small circular
+arc of radius $r_1$ and then we move a small distance radially outward
+from $r_1$ to $r_2$. Provided the difference between the angles
+$\varphi_1$ and $\varphi_2$ is (very) small, these paths are
+approximately perpendicular and we can use Pythagoras’ theorem to find
+the distance $d s$. Note that the arc is approximately straight –
+it has a length $r_1 d \varphi$, where
+$d \varphi = \varphi_2-\varphi_1$. So we have:
+$$d s^2 = (d r)^2 + (arc~length)^2   = (d r)^2 + r_1^2 (d \varphi)^2 .$$
+
+We can use the same arguments also for the area: since the different
+segments are approximately perpendicular, we find the area by simply
+multiplying them:
+
+!!! info "Infinitesimal surface element in polar coordinates"
+    	$$dA = r dr d\varphi.$$
+
+This is an important formula to remember for integrating in polar
+coordinates!  The extra $r$ that appears here can be intuitively
+understood: the area swept by an angle difference $d\varphi$
+*increases* as we move further away from the origin.
+
+!!! check "Example: Integrating over a circular area"
+    To check the area element we just derived, let us compute a simple
+    integral. We compute the integral over a circle with radius $r_0$
+    with a very simple function that equals to $1$. In this case,
+    we expect to get as a result the are of the region we integrate over.
+
+    We find:
+
+    $$
+    \int_0^{2\pi} d\varphi \int_0^{r_0} r dr =\\
+    2\pi \int_0^{r_0} r dr = 2 \pi \frac{1}{2} r_0^2 = \pi r_0^2,
+    $$
+
+    which is indeed the area of a circle with radius $r_0$.
+
+## 2.2. Converting derivatives between coordinate systems
+
+<iframe width="100%" height=315 src="https://www.youtube-nocookie.com/embed/NGQWGx71w98?rel=0" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
+
+
+Important equations in physics often involve derivatives given in terms
+of Cartesian coordinates. One prominent example are equations of the form
+$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)
+f(x, y) = \ldots.$$
+The derivative operator $\left(\frac{\partial^2}{\partial x^2} +
+\frac{\partial^2}{\partial y^2}\right)$ is so common it has its own name:
+the Laplacian (here for two-dimensional space).
+
+This equation is universal, but for particular situations it might be
+advantageous to use a different coordinate system, such as polar coordinates
+for a system with rotational symmetry. The question then is: How does the
+corresponding equation look like in a different coordinate system?
+
+There are different ways to find the answer. Here, we will focus on
+directly deriving the transformed equation through an explicit calculation
+involving the chain rule for a function of several variables.
+
+!!! info "Chain rule for a multi-variable function"
+    Let $f$ be a function of $n$ variables: $f(y_1, y_2, \ldots, y_n)$,
+    as well as $g_i(x_1, x_2, \ldots, x_n)$ for $i=1,2,\ldots, n$. Then
+
+    $$\frac{\partial}{\partial x_i} = \sum_{j=1}^n
+    \frac{\partial f}{\partial y_j} \frac{\partial g_j}{\partial x_i}$$
+
+We start by replacing the function $f(x, y)$ by a function in polar coordinates
+$f(r, \varphi)$, and ask what is $\frac{\partial}{\partial x} f(r, \varphi)$. When
+we look at this expression, we need to understand what it *means* to take the derivative
+of a function of $r, \varphi$ in terms of $x$?
+
+For this, we need to realize that there are relations between the coordinate systems.
+In particular, $r = r(x,y)$ and $\varphi = \varphi(x, y)$ as defined in equations
+of [the inverse relations](#the-inverse-relation). In fact, we have been rather sloppy in our notation above,
+as the functions $f(x,y)$ and $f(r, \varphi)$ do not mean that I substitute $x=r$
+and $y=\varphi$! It is more precise to state that there are two diferent
+functions $f_\text{cart}(x,y)$ and $f_\text{polar}(r, \varphi)$ that are equivalent,
+in the sense that
+
+$$f_\text{cart}(x, y) = f_\text{polar}(r(x,y), \varphi(x,y))$$
+
+In physics, we usually never write this down explicitly, but we are aware that these
+are two different functions from the fact that they use different coordinates.
+
+With this information, we can now apply the chain rule:
+
+$$ \frac{\partial}{\partial x} f(r, \varphi) =
+\frac{\partial f}{\partial r} \frac{\partial r(x, y)}{\partial x} +
+\frac{\partial f}{\partial \varphi} \frac{\partial \varphi(x,y)}{\partial x}
+$$
+
+and it is now a matter of (tedious) calculus to arrive at the right result.
+This is the task of exercises 3 and 4, which lead you to compute the Laplacian
+in polar coordinates.
+
+!!! warning "Inverse function theorem"
+    In this calculation, one might be tempted to use the inverse
+    function theorem to compute derivatives like
+    $\frac{\partial \varphi}{\partial x}$ from the much simpler
+    $\frac{\partial x}{\partial \varphi}$. However, note that here we
+    are dealing with functions depending on several variables, so an appropriate
+    *Jacobian* has to be used (see [Wikipedia](https://en.wikipedia.org/wiki/Inverse_function_theorem)). A direct calculation is in this particular case considerably easier.
+
+Note that this procedure also applies to transformations to other coordinate systems,
+although the calculations can become quite tedious. In conventional cases,
+it is usually advised to look up the correct form.
+
+## 2.3. Coordinate systems in 3D
+
+<iframe width="100%" height=315 src="https://www.youtube-nocookie.com/embed/VjUbnZN1BvA?rel=0" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
+
+
+### Cylindrical coordinates
+
+Three dimensional systems may have axial symmetry. An example is an
+electrically charged wire of which we would like to calculate the
+electric field, or a current-carrying wire for which we would like to
+calculate the magnetic field. For such problems, the most convenient
+coordinates are *cylindrical coordinates*. For a further convenience, we choose
+the symmetry-axis as the $z$-axis. Note that this allowed, because we may
+choose the coordinate system ourselves - it is not imposed by the
+problem.
+
+Cylindrical coordinates are defined straightforwardly: we use polar
+coordinates $r$ and $\varphi$ in the $xy$ plane, and the distance $z$
+along the symmetry-axis as the third coordinate. The radius is therefore again always defined as a non-negative number $r \in \left<0, \infty \right)$, and the range for the azimuthal angle is analogically $\varphi \in \left< 0,2\pi \right)$. The *height* $z$ along the cylinder axis can take any real value, hence $z \in \mathbb{R}$ . If the axis system is
+chosen in physical space, we have two coordinates which have the
+dimension of a distance: $r$ and $z$. The other coordinate,
+$\varphi$ is of course dimensionless.
+
+What is the distance traveled along a path when we express this in
+cylindrical coordinates? Let’s consider an example shown in the figure below.
+
+<figure markdown>
+  ![image](figures/Coordinates_13_0.svg)
+  <figcaption></figcaption>
+</figure>
+
+We want to find the length of the (small) red segment $d s$. By
+inspecting the figure, we see that the horizontal (i.e. parallel to the
+$xy$-plane) segment $d l$ is perpendicular to the vertical segment
+$dz$. Using for $d l$ the length we obtained before for a line
+segment in the $xy$ plane expressed in polar coordinates, we
+immediately find:
+$$d s^2 = d l^2 + d z^2 = d r^2 + r^2 d \varphi^2 + d z^2.$$
+The volume element is consequently given as:
+
+!!! info "Infinitesimal volume element in cylindrical coordinates"
+    $$dV = r dr d\varphi dz.$$
+
+### Spherical coordinates
+
+For problems with spherical symmetry, we use *spherical coordinates*.
+These work as follows. For a point $\bf r$ in 3D space, we can specify
+the position of that point by specifying its (1) distance to the origin
+and (2) the direction of the line connecting the origin to our point.
+The specification of this direction can be identified with a point on a
+sphere which is centered at the origin:
+
+<figure markdown>
+  ![image](figures/Coordinates_15_0.svg)
+  <figcaption>The position of a point on the sphere is specified using the radius $r$ and two angles (azimuthal)
+$\varphi$ and (polar) $\theta$ in the given order </figcaption>
+</figure>
+
+!!! warning "Parameter ranges in spherical coordinates"
+    - The radius ($r$) is defined for $r \in \left<0, \infty \right)$ </br>
+    - The azimuthal angle ($\varphi$) has the range of $\varphi \in \left< 0, 2\pi \right)$  </br>
+    - The polar angle ($\theta$) has the range $\theta \in \left<0, \pi \right>$ 
+
+!!! warning
+    In mathematics, the angles are often labeled the other way
+    around: there, $\varphi$ is used for the angle between a line running from
+    the origin to the point of interest and the $z$-axis, and $\theta$ for
+    the angle of the projection of that line with the $x$-axis. The
+    convention used here is customary in physics. 
+
+The relation between Cartesian and spherical coordinates is defined by:
+!!! info "The relation between Cartesian and spherical coordinates"
+    $$x = r \cos \varphi \sin \theta$$
+    $$y = r \sin\varphi \sin \theta$$ $$z = r \cos\theta$$ 
+
+The inverse transformation is easy to find: 
+!!! info "The inverse relation between Cartesian and spherical coordinates"
+    $$r = \sqrt{x^2+y^2+z^2}, \qquad r \in \left<0, \infty \right)$$
+    $$\varphi = \begin{cases} \arctan(y/x) &{\rm for ~} x>0; \\
+    \pi + \arctan(y/x) & {\rm for ~} x<0 {\rm ~ and ~} y>0;\\
+    -\pi + \arctan(y/x) &{\rm for ~} x<0 {\rm ~ and ~} y<0.
+    \end{cases}, \qquad \varphi \in \left< 0,2\pi \right)$$ 
+    $$\theta = \arccos(z/\sqrt{x^2+y^2+z^2}), \qquad \theta \in \left< 0,\pi \right> $$
+    
+These relations can be derived from the following figure:
+
+<figure markdown>
+  ![image](figures/Coordinates_17_0.svg)
+  <figcaption></figcaption>
+</figure>
+
+The distance related to a change in the spherical coordinates is
+calculated using Pythagoras’ theorem. The length $ds$ of a short segment
+on the sphere with radius $r$ corresponding to the changes in the polar
+angles of $d\theta$ and $d\varphi$ is given as
+$$dl^2 = r^2 \left(\sin^2 \theta d\varphi^2 + d\theta^2\right).$$
+In order to verify this, it is important to realize that all points with
+*the same* coordinate $\theta$ span a circle in a horizontal plane
+with a radius $r\sin\theta$ as shown in the figure below.
+
+From this, we can also infer that for a segment with a radial component
+$dr$ in addition to the displacement on the surface of the sphere, the combined displacement is:
+$$ds^2 = r^2 \left(\sin^2 \theta d\varphi^2 + d\theta^2\right) + dr^2.$$
+
+The picture below shows the geometry behind the calculation of this
+displacement.
+
+<figure markdown>
+  ![image](figures/Coordinates_19_0.svg)
+  <figcaption></figcaption>
+</figure>
+
+
+From these arguments we can again also find the volume element, it is
+here given as
+
+!!! info "Infinitesimal volume element in spherical coordinates"
+    $$dV = r^2 \sin\theta dr d\theta d\varphi.$$
+
+## 2.4. Summary
+
+We have discussed four different coordinate systems:
+
+1.  !!! tip "Cartesian coordinates" 
+    $${\bf r} = (x_1, \ldots, x_n)$$
+    $$ x_{n} \in \mathbb{R}$$
+    This systems can be used for any dimension $n$. It is particularly convenient for: infinite spaces, systems
+    with rectangular symmetry.
+    Distance between two points ${\bf r} = (x_1, \ldots, x_n)$ and
+    ${\bf r}' = (x'_1, \ldots, x'_n)$:
+    $$\Delta s^2 = (x'_1 - x_1)^2 + (x'_2 - x_2)^2 + \ldots + (x'_n - x_n)^2.$$
+
+2.  !!! tip "Polar coordinates" 
+    $${\bf r} = (r, \varphi)$$
+    $$ r \in \left<0, \infty \right), \quad \varphi \in \left< 0,2\pi \right) $$
+    This system can be used in two dimensions. It is particularly suitable for systems with circular symmetry or functions
+    given in terms of these coordinates. <br/>
+    Infinitesimal distance: $$ds^2 = dr^2 + r^2 d\varphi^2.$$
+    Infinitesimal area: $$dA = r dr d\varphi.$$
+
+3.  !!! tip "Cylindrical coordinates" 
+    $${\bf r} = (r, \varphi, z)$$
+    $$ r \in \left<0, \infty \right), \quad \varphi \in \left< 0,2\pi \right), \quad z \in \mathbb{R} $$ 
+    This system can be used in three dimensions. It is particularly suitable for systems with axial symmetry
+    or functions given in terms of these coordinates. <br/>
+    Infinitesimal distance: $$ds^2 = dr^2 + r^2 d\varphi^2 + dz^2.$$
+    Infinitesimal volume: $$dV = r dr d\varphi dz.$$
+
+4.  !!! tip "Spherical coordinates" 
+    $${\bf r} = (r, \varphi, \theta)$$
+    $$ r \in \left<0, \infty \right), \quad \varphi \in \left< 0,2\pi \right), \quad \theta \in \left< 0,\pi \right> $$
+    This system can be used in three dimensions. It is particularly suitable for systems with spherical
+    symmetry or functions given in terms of these coordinates. <br/>
+    Infinitesimal distance: 
+    $$ds^2 =r^2 (\sin^2 \theta d\varphi^2 + d\theta^2) +  dr^2 .$$
+    Infinitesimal volume:
+    $$dV = r^2 \sin(\theta) dr d\varphi d\theta.$$ 
+
+## 2.5. Problems
+
+1.  [:grinning:] *Warm-up*
+
+    1.  Find the polar coordinates of the point with Cartesian
+        coordinates $${\bf r} = \sqrt{2} (1,1).$$
+
+    2.  Find the cylindrical coordinates of the point with Cartesian
+        coordinates $${\bf r} = \frac{3}{2} (\sqrt{3}, 1, 1).$$
+
+    3.  Find the spherical coordinates of the points
+        $${\bf r} = (3/2, \sqrt{3}/2, 1).$$
+
+2.  [:grinning:] *Geometry and different coordinate systems*
+
+    What geometric objects do the following boundary conditions describe?
+   
+    1. $r<1$ in cylindrical coordinates,
+    2. $\varphi=0$ in cylindrical coordinates,
+    3. $r=1$ in spherical coordinates,
+    4. $\theta = \pi/4$ in spherical coordinates,
+    5. $r=1$ and $\theta=\pi/4$ in spherical coordinates,
+    6. $\varphi=\pi/2$ and $\theta=\pi/2$ in spherical coordinates.
+
+3.  [:smirk:] *Partial derivatives*
+
+    (a) Consider the function $f(r,\varphi,\theta)=\frac{1}{r^2}$ defined
+        using spherical coordinates.
+        Compute $\frac{\partial}{\partial z} f(r, \varphi, \theta)$.
+
+    (b) Now let us consider a function defined using cylindrical coordinates
+        as $f(r, \varphi, z) = \frac{1}{r^2}$ (i.e.~very similar to the previous
+        question).
+        Compute again $\frac{\partial}{\partial z} f(r, \varphi, z)$.
+ 
+4.  [:smirk:] *Chain rule practice* 
+
+    From the transformation from polar to Cartesian
+    coordinates, show that
+    $$\frac{\partial}{\partial x} = \cos\varphi \frac{\partial}{\partial r} - \frac{\sin\varphi}{r} \frac{\partial}{\partial \varphi}$$
+    and
+    $$\frac{\partial}{\partial y} = \sin\varphi \frac{\partial}{\partial r} + \frac{\cos\varphi}{r} \frac{\partial}{\partial \varphi}.$$
+    (Use the chain rule for differentiation).
+
+5.  [:sweat:] *Laplace operator in spherical coordinates*
+
+    Using the result of problem 4, show that the Laplace
+    operator acting on a function $\psi({\bf r})$ in polar coordinates
+    takes the form
+    $$\nabla^2 \psi({\bf r}) =\left( \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \psi({\bf r}) = \frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial \psi(r,\varphi)}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \psi(r,\varphi)}{\partial \varphi^2}.$$
+
+    In a similar fashion it can be shown that for spherical coordinates,
+    the Laplace operator acting on a function $\psi({\bf r})$ becomes:
+    $$\begin{align} \nabla^2 \psi (r,\varphi, \theta) &= 
+    \frac{1}{r^2} \frac{\partial}{\partial r^2} \left( r^2 \frac{\partial \psi(r,\varphi,\theta)}{\partial r} \right) \\ &+ \frac{1}{r^2\sin^2\theta} \frac{\partial^2 \psi(r,\varphi, \theta)}{\partial \varphi^2} \\ &+ \frac{1}{r^2\sin\theta} 
+    \frac{\partial}{\partial \theta}\left( \sin\theta \frac{\partial\psi(r,\varphi, \theta)}{\partial \theta}\right).
+    \end{align}$$
+    This is however even more tedious (you do not have to show this).
+
+6.  [:grinning:] *Integration and coordinates I*
+
+    We define $f(r, \varphi) = \frac{1}{r}$ in polar coordinates. Explain how
+    a circular region, centered at the origin and with radius $r_0$, can be described
+    using polar coordinates. Then compute the integral of $f(r,\varphi)$ over
+    this region.
+
+7.  [:grinning:] *Integration and coordinates II*
+
+    Compute the area of the spherical cap defined by $r=r_0$ and $\theta <\theta_0$. 
+
+8.  [:smirk:] *Integration and coordinates III*
+
+    In 2D, we can define a shape by specifying a function $r(\varphi)$:
+
+    ![image](figures/shape_polar.svg)
+    
+    (Of course, here we need to have $r(0) = r(2\pi)$.)
+
+    Show that the area of this shape is given by
+    $$
+    \int_0^{2\pi} \frac{1}{2}\left[r(\varphi)\right]^2 d\varphi
+    $$
+
diff --git a/docs/3_vector_spaces.md b/docs/3_vector_spaces.md
new file mode 100644
index 0000000000000000000000000000000000000000..a53e6a6b6385d081e11aec95a350e248468c9cb5
--- /dev/null
+++ b/docs/3_vector_spaces.md
@@ -0,0 +1,223 @@
+---
+title: Vector Spaces
+---
+
+# 3. Vector spaces
+
+The lecture on vector spaces consists of **three parts**:
+
+- [3.1. Definition and basis dependence](#31-definition-and-basis-dependence)
+
+- [3.2. Properties of a vector space](#32-properties-vector-space)
+
+- [3.3. Matrix representation of vectors](#33-matrix-representation-vectors)
+
+and at the end of this lecture note, there is a set of corresponding exercises
+
+- [3.4 Problems](#34-problems)
+
+---
+
+The contents of this lecture are summarised in the following **videos**:
+
+1. [Vector spaces: Introduction](https://www.dropbox.com/s/evytrbb55fgrcze/linear_algebra_01.mov?dl=0)
+
+2. [Operations in vector spaces](https://www.dropbox.com/s/1530xb7zbuhwu6u/linear_algebra_02.mov?dl=0)
+
+3. [Properties of vector spaces](https://www.dropbox.com/s/5lwkxd8lw5uwri9/linear_algebra_03.mov?dl=0)
+
+**Total video lentgh: ~16 minutes**
+
+## 3.1. Definition and basis dependence
+
+A vector $\vec{v}$ is a mathematical object characterised by both a **magnitude** and a **direction**, that is, an orientation in a given space.
+  
+We can express a vector in terms of its individual **components**. Let's assume we have an $n$-dimensional space, meaning that the vector $\vec{v}$ can be oriented in different ways along each of $n$ dimensions. The expression of $\vec{v}$ in terms of its components is
+
+$$\vec{v} = (v_1, v_2,\ldots, v_n) \, ,$$
+ 
+We will denote by ${\mathcal V}^n$ the **vector space** composed by all possible vectors of the above form.
+
+The components of a vector, $\{ v_i\}$ can be **real numbers** or **complex numbers**,
+depending on whether we have a real or a complex vector space. 
+
+!!! info "Vector basis" 
+    Note that the above expression of $\vec{v}$ in terms of its components assume that we are using a specific **basis**. 
+    It is important   to  recall that the same vector can be expressed in terms of different bases. 
+    A **vector basis** is a set of $n$ vectors that can be used to generate all the elements of a vector space.
+
+For example, a possible basis of  ${\mathcal V}^n$ could be denoted by $\vec{a}_1,\vec{a}_2,\ldots,\vec{a_n}$,
+and we can write a generic vector  $\vec{v}$  as
+
+$$\vec{v} = (v_1, v_2, \ldots, v_n) = v_1 \vec{a}_1 + v_2 \vec{a}_2 + \ldots v_n \vec{a}_n \, .$$
+
+However, one could choose a different basis, denoted by $\vec{b}_1,\vec{b}_2,\ldots,\vec{b_n}$, where the same vector would be expressed in terms of a different set of components
+
+$$ \vec{v} = (v'_1, v'_2, \ldots, v'_n) = v'_1 \vec{b}_1 + v'_2 \vec{b}_2 + \ldots v'_n \vec{b}_n \, .$$
+
+Thus, while the vector remains the same, the values of its components depend on the specific choice of basis.
+
+The most common basis is the **Cartesian basis**, where for example for $n=3$:
+
+$$\vec{a}_1 = (1, 0, 0) \, ,\qquad \vec{a}_2 = (0, 1, 0)\, ,\qquad \vec{a}_3 = (0, 0, 1) \, .$$
+  
+!!! warning ""
+    The elements of a vector basis must be **linearly independent** from one another, meaning
+    that none of them can be expressed as a linear combination of the other basis vectors.
+
+We can consider one example in the two-dimensional real vector space $\mathbb{R}$, namely the $(x,y)$ coordinate plane, shown below.
+
+<figure markdown>
+  ![image](figures/3_vector_spaces_1.jpg)
+  <figcaption></figcaption>
+</figure>
+  
+In this figure, you can see how the same vector $\vec{v}$ can be expressed in two different bases. In the first one (left panel), the Cartesian basis is used and its components are $\vec{v}=(2,2)$. In the second basis (right panel), the components are different, namely $\vec{v}=(2.4 ,0.8)$, while the magnitude and direction of the vector remain unchanged.
+
+For many problems, both in mathematics and in physics, the appropriate choice of the vector space basis may significantly simplify the
+solution process.
+    
+## 3.2. Properties of a vector space
+
+You might be already familiar with the concept of performing a number of various **operations** between vectors, so in this course, let us review some essential operations that are relevant to start working with quantum mechanics:
+
+!!! info "Addition" 
+    I can add two vectors to produce a third vector, $$\vec{a} + \vec{b}= \vec{c}.$$
+    As with scalar addition, also vectors satisfy the commutative property, $$\vec{a} + \vec{b} = \vec{b} + \vec{a}.$$
+    Vector addition can be carried out in terms of their components,
+    $$ \vec{c} = \vec{a} + \vec{b} = (a_1 + b_1, a_2 + b_2, \ldots, a_n + b_n) =  (c_1, c_2, \ldots, c_n).$$
+
+!!! info "Scalar multiplication" 
+    I can multiply a vector by a scalar number (either real or complex) to produce another vector, $$\vec{c} = \lambda \vec{a}.$$ 
+    Addition and scalar multiplication of vectors are both *associative* and *distributive*, so the following relations hold
+    $$\begin{align} &1. \qquad (\lambda \mu) \vec{a} = \lambda (\mu \vec{a}) = \mu (\lambda \vec{a})\\
+    &2. \qquad \lambda (\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}\\
+    &3. \qquad (\lambda + \mu)\vec{a} = \lambda \vec{a} +\mu \vec{a} \end{align}$$
+ 
+### Vector products
+
+In addition to multiplying a vector by a scalar, as mentioned above, one can also multiply two vectors among them. 
+There are two types of vector products; where the end result is a scalar (so just a number) and where the end result is another vector. 
+
+!!! info "Scalar product of vectors" 
+    The scalar product of vectors is given by $$ \vec{a}\cdot \vec{b} = a_1b_1 + a_2b_2 + \ldots + a_nb_n \, .$$
+    Note that since the scalar product is just a number, its value will not depend on the specific
+    basis in which we express the vectors: the scalar product is said to be *basis-independent*. The scalar product is also found via 
+    $$\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}| \cos \theta$$ with $\theta$ the angle between the vectors.
+
+!!! info "Cross product"
+    The vector product (or cross product) between two vectors $\vec{a}$ and $\vec{b}$ is given by 
+    $$ \vec{a}\times \vec{b} = |\vec{a}||\vec{b}|\sin\theta \hat{n}$$
+    where $|\vec{a}|=\sqrt{ \vec{a}\cdot\vec{a} }$ (and likewise for $|\vec{b}|$) is the norm of the vector $\vec{a}$, $\theta$ is the angle between the two vectors, and $\hat{n}$ is a unit vector which is *perpendicular* to the plane that contains $\vec{a}$ and $\vec{b}$. 
+    Note that this cross-product can only be defined in *three-dimensional vector spaces*. The resulting vector 
+    $\vec{c}=\vec{a}\times \vec{b} $ will have as components $c_1 = a_2b_3-a_3b_2$, $c_2= a_3b_1 - a_1b_3$, and $c_3= a_1b_2 - a_2b_1$.
+
+### Unit vector and orthonormality
+
+!!! info "Unit vector"
+    A special vector is the **unit vector**, which has a norm of 1 *by definition*. A unit vector is often denoted with a hat, rather than an arrow ($\hat{i}$ instead of $\vec{i}$). To find the unit vector in the direction of an arbitrary vector $\vec{v}$, we divide by the norm: $$\hat{v} = \frac{\vec{v}}{|\vec{v}|}$$
+
+!!! info "Orthonormality"    
+    Two vectors are said to be **orthonormal** of they are perpendicular (orthogonal) *and* both are unit vectors.
+
+Now we are ready to define in a more formal way what vector spaces are,
+an essential concept for the description of quantum mechanics.
+
+### The main properties
+
+The main properties of **vector spaces** are the following:
+
+!!! info ""
+    A vector space is **complete upon vector addition**.
+    This property means that if two arbitrary vectors  $\vec{a}$ and $\vec{b}$
+    are elements of a given vector space ${\mathcal V}^n$,
+    then their addition should also be an element of the same vector space 
+    $$\vec{a}, \vec{b} \in {\mathcal V}^n, \qquad \vec{c} = (\vec{a} + \vec{b}) \in {\mathcal V}^n  \, ,\qquad \forall\,\, \vec{a}, \vec{b} \,.$$
+
+!!! info "" 
+    A vector space is **complete upon scalar multiplication**.
+    This property means that when I multiply one arbitrary vector  $\vec{a}$,
+    element of the vector space ${\mathcal V}^n$, by a general scalar $\lambda$, the result is another vector which also belongs to the same vector space $$\vec{a} \in {\mathcal V}^n, \qquad \vec{c} = \lambda \vec{a}
+    \in {\mathcal V}^n \qquad \forall\,\, \vec{a},\lambda \, .$$
+    
+The property that a vector space is complete upon scalar multiplication and vector addition is also known as the **closure condition**.
+
+!!! info ""
+    There exists a **null element** $\vec{0}$ such that $\vec{a}+\vec{0} =\vec{0}+\vec{a}=\vec{a} $.
+
+!!! info ""
+    **Inverse element**: for each vector $\vec{a} \in \mathcal{V}^n$ there exists another
+    element of the same vector space, $-\vec{a}$, such that their addition results
+    in the null element, $\vec{a} + ( -\vec{a}) = \vec{0}$. This element it called the **inverse element**.
+
+A vector space comes often equipped with various multiplication operations between vectors, such as the scalar product mentioned above
+(also known as *inner product*), but also many other operations such as *vector product* or *tensor product*. There are also many other properties, but for what we are interested in right now, these are sufficient.
+
+
+## 3.3. Matrix representation of vectors
+
+It is advantageous to represent vectors with a notation suitable for matrix manipulation and operations. As we will show in the next lectures, the operations involving states in quantum systems can be expressed in the language of linear algebra.
+
+First of all, let us remind ourselves how we express vectors in the standard Euclidean space. In two dimensions, the position of a point $\vec{r}$ when making explicit the Cartesian basis vectors reads
+$$ \vec{r}=x \hat{i}+y\hat{j} \, .$$
+As mentioned above, the unit vectors $\hat{i}$ and $\hat{j}$ form an *orthonormal basis* of this vector space, and we call $x$ and $y$ the *components* of $\vec{r}$ with respect to the directions spanned by the basis vectors.
+
+Recall also that the choice of basis vectors is not unique, we can use any other pair of orthonormal unit vectors $\hat{i}$ and $\hat{j}$, and express the vector $\vec{r}$ in terms of these new basis vectors as 
+$$ \vec{r}=x'\hat{i}'+y'\hat{j}'=x\hat{i}+y\hat{i} \, ,$$
+with $x'\neq x$ and $y'\neq y$. So, while the vector itself does not depend on the basis, the values of its components are basis dependent.
+
+We can also express the vector $\vec{r}$ in the following form
+$$ \vec{r} =  \begin{pmatrix}x\\y\end{pmatrix} \, ,$$
+which is known as a *column vector*. Note that this notation assumes a specific choice of basis vectors, which is left
+implicit and displays only the information on its components along this specific basis.
+
+For instance, if we had chosen another set of basis vectors $\hat{i}'$ and $\hat{j}'$, the components would be $x'$ and $y'$, and the corresponding column vector representing the same vector $\vec{r}$ in such case would be given by
+$$ \vec{r}= \begin{pmatrix}x'\\y'\end{pmatrix}.$$
+
+We also know that Euclidean space is equipped with a scalar vector product. 
+The scalar product $\vec{r_1}\cdot\vec{r_2}$ of two vectors in 2D Euclidean space is given by
+$$ \vec{r_1}\cdot\vec{r_2}=r_1\,r_2\,\cos\theta \, ,$$
+where $r_1$ and $r_2$ indicate the *magnitude* (length) of the vectors and $\theta$ indicates its relative angle. Note that the scalar product of two vectors is just a number, and thus it must be *independent of the choice of basis*.
+
+The same scalar product can also be expressed in terms of components of $\vec{r_1}$ and $\vec{r_2}$. When using the $\{ \hat{i}, \hat{j} \}$ basis, the scalar product will be given by
+$$ \vec{r_1}\cdot\vec{r_2}=x_1\,x_2\,+\,y_1\,y_2 \, .$$
+Note that the same result would be obtained if the basis $\{ \hat{i}', \hat{j}' \}$ 
+had been chosen instead 
+$$ \vec{r_1}\cdot\vec{r_2}=x_1'\,x_2'\,+\,y_1'\,y_2' \, .$$
+
+The scalar product of two vectors can also be expressed, taking into
+account the properties of matrix multiplication, in the following form
+$$ \vec{r_1}\cdot\vec{r_2} = \begin{pmatrix}x_1, y_1\end{pmatrix}\begin{pmatrix}x_2\\y_2\end{pmatrix} = x_1x_2+y_1y_2 \, ,$$
+where here we say that the vector $\vec{r_1}$ is represented by a *row vector*.
+
+Therefore, we see that the scalar product of vectors in Euclidean space can be expressed as the matrix multiplication of row and column vectors. The same formalism, as we will see in the next class, can be applied for the case of Hilbert spaces in quantum mechanics.
+
+***
+
+## 3.4. Problems
+
+**1)** [:grinning:] Find a unit vector parallel to the sum of $\vec{r}_1$ and $\vec{r}_2$, where we have defined
+$$\vec{r}_1=2\vec{i}+4\vec{j}-5\vec{k} \, , $$ and $$\vec{r}_2=\vec{i}+2\vec{j}+3\vec{k} \, .$$.
+
+***
+
+**2)** [:grinning:] If the vectors $\vec{a}$ and $\vec{b}$ may be written in the parametric form
+as a function of the parameter $t$ as follows
+$$\vec{a}=3t^3\,\vec{i}-2t\,\vec{j}+t^2\,\vec{k}$$ and $$\vec{b}=3\sin{t}\,\vec{i}+2\cos{t}\,\vec{k}$$
+Evaluate the following derivatives with respect to the parameter $t$:
+
+**(a)** $ d(\vec{a}\cdot\vec{b}) / dt$.
+
+**(b)** $d \left( \vec{a} \times \vec{b}\right)/dt$.
+
+***
+
+**3)** [:sweat:] Three non-zero vectors $\vec{a}$, $\vec{b}$ and $\vec{c}$ are such that $(\vec{a}+\vec{b})$ is perpendicular to $(\vec{a}+\vec{c})$ and $(\vec{a}-\vec{b})$ is perpendicular to $(\vec{a}-\vec{c})$. Show that $\vec{a}$ is perpendicular to $\vec{b}+\vec{c}$. If the magnitude of the vectors $\vec{a}$, $\vec{b}$ and $\vec{c}$ are in the ratio 1:2:4, find the angle between $\vec{b}$ and $\vec{c}$.
+
+***
+
+**4)** [:grinning:] Find the vector product $\vec{b} \times \vec{c}$ and the triple product $\vec{a}\cdot(\vec{b} \times \vec{c})$, where these three vectors are defined as
+$$\vec{a}=\vec{i}+4\vec{j}+\vec{k}\,,$$ and $$\vec{b}=-\vec{i}+2\vec{j}+2\vec{k}\,,$$ and $$\vec{c}=2\vec{i}-\vec{k}\,.$$
+
+***
+
diff --git a/docs/4_vector_spaces_QM.md b/docs/4_vector_spaces_QM.md
new file mode 100644
index 0000000000000000000000000000000000000000..61671535a57d41a26ecc6ee636f2f6d8e3dd2f7f
--- /dev/null
+++ b/docs/4_vector_spaces_QM.md
@@ -0,0 +1,357 @@
+---
+title: Vector spaces in quantum mechanics
+---
+
+# 4. Vector spaces in quantum mechanics
+
+The lecture on vector spaces in quantum mechanics consists of the following parts:
+
+- [4.1. Dirac notation and Hilbert spaces](#41-dirac-notation-and-hilbert-spaces)
+
+- [4.2. Inner product of state vectors](#42-inner-product-of-state-vectors)
+
+- [4.3. Matrix representation of ket and bra vectors](#43-matrix-representation-ket-and-bra-vectors)
+
+- [4.4. A two-dimensional Hilbert space](#44-a-two-dimensional-hilbert-space)
+
+and at the end of the lecture there is a set of exercises 
+
+- [4.5. Problems](#45-problems)
+
+---
+
+The contents of this lecture are summarised in the following **videos**:
+
+- [1. Dirac notation and properties of Hilbert spaces](https://www.dropbox.com/s/mnccmpff33pre9r/linear_algebra_04.mov?dl=0)
+
+- [2. Algebra with Dirac notation - bras and kets](https://www.dropbox.com/s/709bh9j083y7d0s/linear_algebra-06.mov?dl=0)
+
+- [3. Finding expansion coefficients for Dirac notation](https://www.dropbox.com/s/k9plspkonnk3nc0/linear_algebra-07.mov?dl=0)
+
+**Total length of the videos: ~14 minutes**
+
+---
+
+## 4.1. Dirac notation and Hilbert spaces
+
+In the previous lecture, we reviewed the basic properties of linear vector spaces. Next, we will discuss how the same formalism
+can be applied to describe physical states in quantum mechanics.
+
+The state of a physical system in quantum mechanics is represented by a vector belonging to a *complex vector space*.
+This vector space is known as the *state space* of the system.
+
+### Ket
+
+!!! info "Ket"
+     A physical state of a quantum system is represented by a symbol $$|~~\rangle$$ known as a **ket**. 
+     This notation is known as the *Dirac notation*, and it is very prominent in the description of quantum mechanics. 
+     Note that a *ket* is also referred to as a state vector, *ket* vector, or just a state. 
+
+### Hilbert space
+
+The set of all possible state vectors describing a given physical system forms a complex vector space $\mathcal{H}$, which is known as the *Hilbert space* of the system. You can think of the Hilbert space as the space populated by all possible states that a quantum system can be found on. Hilbert spaces inherit a number of the important properties of general vector spaces:
+    
+!!! info "Superposition" 
+     A linear combination (or superposition) of two or more state vectors $|{\psi_1}\rangle, |{\psi_2}\rangle, |{\psi_3}\rangle,... |{\psi_n}\rangle$, is also a state of the quantum system. Therefore, a linear combination $|{\Psi}\rangle$ of the form $$|{\Psi}\rangle=c_1|{\psi_1}\rangle+c_2|{\psi_1}\rangle+c_3|{\psi_3}\rangle+...+c_n|{\psi_n}\rangle = \sum_{i=1}^n c_i|{\psi_i}\rangle$$ 
+     where $c_1, c_2, c_3, ...$ are general complex numbers will also be a physically allowed state vector of the quantum system.
+     
+!!! info "Normalisation"
+     If a physical state of the system is given by a vector $|{\Psi}\rangle$, then the same physical state can also be represented by the vector $c|{\Psi}\rangle$ where $c$ is a non-zero complex number. The reason for this is that the overall normalisation of the state vector *does not change the physics* of the system (or in other words, does not modify the *information content* of the state vector). As we will discuss below, in quantum mechanics it is advantageous to work with  *normalised vectors*, that is, whose *length* is one. 
+     We will define in a while what do we mean by length.
+
+!!! info "Completeness"
+     A set of vectors $|{\psi_1}\rangle, |{\psi_2}\rangle, |{\psi_3}\rangle,... |{\psi_n}\rangle$ is said to be  *complete* if every state 
+     of the quantum system can be represented as a linear combination of them.
+     In such a case, it becomes possible to express  *any* state vector $|{\Psi}\rangle$ of the system's Hilbert space as a superposition of these $n$ vectors,
+     $$ |{\Psi}\rangle=\sum_{i=1}^n c_i|{\psi_i}\rangle$$
+     for some specific choice of coefficients $c_i$. The set of vector \{$|{\psi_i}\rangle$\} are then said to *span* the Hilbert space of the quantum system.
+    
+!!! info "Basis"
+     A set of vectors \{$|{\psi_i}\rangle$\} is said to form a basis for the state space if the set of vectors is *complete* and if in addition they are  *linearly independent*. The latter condition means essentially that one cannot express a given basis vector as a linear combination of the rest of basis vectors.
+     Linear independence can also be expressed as the requirement that if one has that
+     $$\sum_{i=1}^n c_i |{\psi_i}\rangle=0\;\text{then}\; c_i=0\;\text{for all}\; i$$
+
+!!! info "Dimensionality"
+     The minimum number of vectors needed to form a complete set of basis states is known as the *dimensionality* of the state space. In quantum mechanics you will encounter systems whose Hilbert spaces have very different dimensionality, from the spin-1/2 particle (a $n=2$ vector space) to the free particle (whose state vectors live in an infinite vector space).
+
+### Bra vectors
+
+We need now to extend the Dirac notation to describe other elements of this vector space. We need to introduce a quantity $\langle{\Psi}|$, known as a  *bra vector*, which represents the  *complex conjugates* of the corresponding ket vector. Bra vectors are elements of the vector space $\mathcal{H}^{*}$, called the *dual space* of the original Hilbert space $\mathcal{H}$.
+
+!!! info "Bra vector"
+     If a ket vector is given by $$| \Psi\rangle= c_1 |\psi_1\rangle+c_2|\psi_2\rangle \, ,$$ 
+     then the corresponding bra vector will be given by 
+     $$\langle{\Psi}|= c_1^*\langle{\psi_1}|+c_2^*\langle{\psi_2}| \, .$$
+
+As mentioned above, the vector space spanned by all bra vectors $\langle{\Psi}|$ is referred to as the dual space and is represented by $\mathcal{H}^*$. For each ket vector belonging to $\mathcal{H}$, there will exist an associated bra vector belonging to the dual space $\mathcal{H}^*$.
+
+Below, we will further discuss the concept of bra vectors when presenting the matrix representation of elements of the Hilbert space.
+      
+## 4.2. Inner product of state vectors
+
+Assume that $|{\psi}\rangle$ and $|{\phi}\rangle$ are any two state vectors belonging to the
+state (Hilbert) space $\mathcal{H}$, then we can define the  *inner product*
+between them, $\langle{\psi}|{\phi}\rangle$, as follows. 
+
+The inner product in quantum mechanics is the analog of the usual scalar product that one encounters in vector spaces, and which we reviewed in the previous lecture. As in usual vector spaces, the inner product of two state vectors is a  *scalar* and in this case a complex number in general. 
+
+!!! tip "Interpretation of the inner product in quantum mechanics"
+     1.   The value of the inner product $\langle{\psi}|{\phi}\rangle$ indicates the **probability amplitude** (not the probability) of measuring a system, which characterised by the state $|{\phi}\rangle$, to be in the state $|{\psi}\rangle$. 
+     2.   This inner product can also be understood as measuring the **overlap** between the state vectors $|{\psi}\rangle$ and $|{\phi}\rangle$. 
+     3.   Then the  **probability of observing the system to be in the state $|\psi\rangle$** given that it is in the state $|\phi\rangle$ will be given by $$|\langle \psi | \phi \rangle|^2 \, .$$ Since the latter quantity is a probability, we know that it should satisfy the condition that 
+     $$0 \le |\langle \psi | \phi \rangle|^2 \le 1 \, .$$
+
+### Properties of the inner product
+
+The inner product (probability amplitude) $\langle \psi | \phi \rangle$ exhibits the following properties:
+      
+!!! info "Properties of the inner product"
+     1. **Complex conjugate:** $\langle \psi | \phi \rangle=\langle \phi | \psi \rangle^*$
+     2. **Distributivity and associativity:** $\langle \psi |\{c_1 |\phi_1\rangle+c_2 |\phi_2 \rangle\}=c_1\langle \psi | \phi_1\rangle+c_2\langle \psi | \phi_2\rangle$
+     3. **Positivity:** $\langle \psi | \psi \rangle\geq0 \, .$
+          If $\langle \psi | \psi \rangle = 0$ then, this implies that the state vector $|\psi\rangle=0$ is the null element of the Hilbert space.
+     4. **Orthogonality:** Two states $|\psi \rangle$ and $|\phi \rangle$ are said to be *orthogonal* if $\langle \psi | \phi\rangle=0 \, .$
+          By analogy with regular vector spaces, we can think of these two state vectors $|\psi \rangle$ and $|\phi \rangle$ as being *perpendicular* to each other. Note that for a quantum system occupying a certain state, there is a vanishing probability of it being observed in a state orthogonal to it.
+     5. **Norm:** The quantity $\sqrt{\langle \psi | \psi \rangle}$ is known as the  *length* or the *norm* of the state vector $|\psi\rangle$. 
+          You can see from the properties of complex algebra that this length must be a real number. A physically valid state $|\psi \rangle$ must be normalized to unity, that is $\langle \psi | \psi \rangle=1$. Note that a state that cannot be normalized to unity does not represent a physically acceptable state.
+     6. **Orthonormality:** A set of orthonormal basis vectors $\{|\psi_i\rangle\text{;}\; i=1,2,3,...,n\}$ will have the property $\langle \psi_i |\psi_j \rangle=\delta_{ij}$ where $\delta_{ij}$ is a mathematical symbol known as the *Kronecker delta*, which equals unity if $i=j$ and zero if $i\neq j$.
+   
+From all the above conditions, we see that a Hilbert space is a so-called *complex inner product space*, which is nothing else but a complex vector space equipped with a inner product. All the vectors belonging to a Hilbert space $\mathcal{H}$ have a finite norm, which means that they can be normalized to unity. This normalisation condition is essential is we are to apply the probabilistic interpretation of the state vectors described above.
+
+## 4.3. Matrix representation of ket and bra vectors
+ 
+As we have discussed, in quantum mechanics a general state vector $|\psi\rangle$ can be represented in terms of the basis vectors, $\{|\phi_i\rangle;i=1,2,...,n\}$, as 
+$$ |\psi\rangle=\sum_{i=1}^n c_i |\phi_i\rangle $$
+for some values of the complex coefficients $\{ c_i\}$. To determine the values of these coefficients, we can take the inner product between the bra basis vector $\langle \phi_j|$ and the ket state vector $|\psi\rangle$ and use the orthogonality properties of the basis vectors:
+$$ \langle \phi_j|\psi\rangle = \langle \phi_j|\sum_{i=1}^n c_i |\phi_i\rangle = \sum_{i=1}^n c_i\langle \phi_j|\phi_i\rangle = \sum_{i=1}^n c_i\delta_{ij} = c_j \, .$$
+Therefore, if we now denote the coefficients $\{ c_i\}$ of the state vector $|\psi\rangle$ by $\{ \psi_i\}$, we have the expansion
+$$ |\psi\rangle=\sum_{i=1}^n c_i |\phi_i\rangle= \sum_{i=1}^n \left( \langle \phi_i|\psi\rangle \right) |\phi_i\rangle \, .$$
+By analogy with the Euclidean case, we can understand the coefficients $\psi_i$ as the *components* of the state vector $ |\psi\rangle$ along the $n$ directions spanned by the basis vectors. Here, note also that in this notation $\psi_i$ is an *scalar* (just a number) and not a vector. Furthermore, note that, as opposed to the Euclidean space, the coefficients $\psi_i$ will generally be complex numbers.
+
+This analogy with the case of ordinary vectors allows us to write the state $|\psi\rangle$ as a *column vector* with respect to the set of basis vectors $\{|\phi_i\rangle;i=1,2,...,n\}$, which are kept implicit: 
+$$ |\psi\rangle= \begin{pmatrix} \psi_1\\\psi_2\\\psi_3\\\vdots\\\psi_n\end{pmatrix} \, . $$
+
+We can also express the basis vectors in this manner. Given that the basis vectors are *orthonormal* among themselves,
+the basis state $|\phi_i\rangle$ will have as component in the $j$ direction
+$$ (\phi_i)_j=\langle \phi_j|\phi_i\rangle=\delta_{ji} \, ,$$ 
+and thus the vector column expression of the basis vectors will be very simple
+$$ |\phi_1\rangle= \begin{pmatrix} 1\\0\\0 \\\vdots\end{pmatrix} \;, \quad |\phi_2\rangle= \begin{pmatrix} 0\\1\\0 \\\vdots\end{pmatrix} \;, \ldots $$
+
+!!! note "Evaluating the inner product"
+     Let us show how we can use the matrix representation to evaluate the inner product (bracket) between two state vectors when expanded in terms of their components in the same basis:
+     $$ |\psi\rangle=\sum_{i=1}^n \psi_i |\phi_i\rangle \,, \qquad |\chi\rangle=\sum_{i=1}^n \chi_i |\phi_i\rangle\, .$$
+     First of all, we note that we can write the above expansions in the following way
+     $$
+     |\psi\rangle=\sum_{i=1}^n |\phi_i \rangle \langle \phi_i | \psi \rangle \, ,
+     $$
+     and thus we see that the basis vectors provide a very useful representation of the *identity operator*:
+     $$
+     \hat{I} = \sum_i |\phi_i\rangle \langle\phi_i| \, ,
+     $$
+     We can insert this  identify operator within the bracket to evaluate the inner
+     product $\langle \chi|\psi\rangle$ between the two state vectors to evaluate the inner product $\langle \chi|\psi\rangle$:
+     $$
+     \langle \chi|\psi\rangle=
+     \langle\chi|\hat{I} |\psi\rangle=\sum_{i=1}^n \langle\chi| \phi_i \rangle \langle\phi_i|\psi\rangle \, .
+     $$
+     Next, using that $\chi_i = \langle \phi_i|\chi \rangle$ are the components of the
+     state vector $|\chi\rangle$ and that  $\langle \chi| \phi_n \rangle=(\langle\phi_i|\chi\rangle)^*$,
+     we have that $\langle \chi |\phi_i\rangle =\chi_i^*$
+     and therefore the inner product of the two state vectors $|\psi\rangle$
+     and  $|\chi\rangle$ can be expressed in terms of their components
+     as follows
+     $$\langle\chi|\psi\rangle=\sum_{i=1}^n\chi_i^*\psi_i.$$
+     which in the matrix representation of state vectors can also be written as
+     $$\langle \chi|\psi\rangle=\begin{pmatrix} \chi^*_1 , \chi^*_2 &,\ldots \end{pmatrix}\begin{pmatrix} \psi_1 \\ \psi_2 \\ \vdots \end{pmatrix} \, .$$ Therefore, we can present  bra vector $\langle \chi|$ as row vectors and ket vectors as column vector. 
+     The row vector can thus be treated as the *complex conjugate* of the corresponding column vector.
+
+## 4.4. A two-dimensional Hilbert space
+
+As a practical example to illustrate the basic ideas of vector spaces applied to quantum physics presented above, we will consider a quantum system which is fundamental for quantum mechanics and its applications. This system corresponds to the possible states that the intrinsic angular momentum of an electron, known as *spin*, can occupy. As you will see in following courses, the Hilbert space for the electron spin has dimension $n=2$, meaning that we can find an electron spin *pointing* either in the up direction, denoted by $|+\rangle$, or the down direction, denoted by $|-\rangle$.
+
+The general state vector of this system will be expressed as a linear superposition of the *up* and *down* states,
+$$
+|\Psi\rangle = c_+ | + \rangle + c_- | - \rangle \, , \quad c_+ = \langle +|\Psi \rangle
+\, , \quad c_- = \langle -|\Psi \rangle \, .
+$$  
+In terms of the matrix representation, if we take $| + \rangle$
+and  $| - \rangle$ as the *basis* for this vector space, we can express $|\Psi\rangle$
+as a column vector
+$$
+|\Psi\rangle = \left( \begin{array}{c} c_+ \\ c_- \end{array}\right) \, ,
+$$
+and similarly for the basis vectors
+$$
+| + \rangle = \left( \begin{array}{c} 1 \\ 0 \end{array}\right) \, ,\quad
+| - \rangle = \left( \begin{array}{c} 0 \\ 1 \end{array}\right) \, .
+$$
+
+We can likewise express the inner product between  $ |\Psi\rangle$ and some other state vector
+$$
+|\Psi'\rangle = c_+' | + \rangle + c_-' | - \rangle \, , \quad c_+ '= \langle +|\Psi' \rangle
+\, , \quad c_-' = \langle -|\Psi' \rangle \, . $$
+as a multiplication of a row vector and a column vector,
+$$
+\langle \Psi'|\Psi\rangle = \left(  (c'_+)^{*} , (c'_-)^{*} \right)\left( \begin{array}{c} c_+ \\ c_- \end{array}\right) =  (c'_+)^{*}c_+  + (c'_-)^{*} c_- \, .
+$$ 
+Note that one needs to take the complex conjugate of the components when expressing a state vector as a bra vector.
+
+Examples of elements of this Hilbert space are the following:
+$$
+\left( \begin{array}{c}3 \\ -2i \end{array} \right) \, ,\quad
+\left( \begin{array}{c}i \\ -4 \end{array} \right) \, ,\quad
+\left( \begin{array}{c}2 \\ 5 \end{array} \right) \, .
+$$
+The values of the coefficients $c_+$ and $c_-$ for these examples above are, respectively,
+$$
+(c_+,c_-) = (3,-2i) \, ,\qquad
+(c_+,c_-) = (i,-4) \, ,\qquad
+(c_+,c_-) = (2,5) \, .\qquad 
+$$
+!!! warning ""
+     Note however that many other bases are possible, and that the physics of a quantum system do not depend on the basis that we choose.
+
+The bra vectors associated to these ket vectors will be given by
+$$ |{\Psi}\rangle=   \left( \begin{array}{c}3 \\ -2i \end{array} \right) \, , \qquad
+\langle{\Psi}|=\left( 3, 2i \right) \, ,$$
+$$ |{\Psi}\rangle = \left( \begin{array}{c}i \\ -4 \end{array} \right) \, , \qquad
+\langle{\Psi}|=\left(  -i , -4  \right)\, , $$
+$$|{\Psi}\rangle=  \left( \begin{array}{c}2 \\ 5 \end{array} \right) \, , \qquad
+\langle{\Psi}|=  \left( 2 , 5  \right) \, .$$
+Note however that the above vectors are not normalised (the inner product with themselves is different from unity), and thus
+cannot represent physical states. We show below an explicit example of a normalised state vector belonging to this Hilbert space.
+
+!!! done "Example: Evaluating the inner product"
+     We also know how we can evaluate the inner product between any two state vectors belonging to this Hilbert space. If we have two state vectors given by
+     $$
+     |\psi\rangle = \frac{1}{\sqrt{2}} \left( \begin{array}{c}1 \\ -i \end{array} \right) \, \quad
+     |\phi \rangle = \left( \begin{array}{c}0 \\1 \end{array} \right)
+     $$
+     then their inner product is
+     $$
+     \langle \psi | \phi \rangle =
+     \frac{1}{\sqrt{2}} \left( 1 , i  \right) \left( \begin{array}{c}0 \\1 \end{array} \right) =
+     \frac{i}{\sqrt{2}} 
+     $$
+     and the associated probability will be given by
+     $$
+     |\langle \psi|\phi\rangle|^2 = \frac{1}{2}
+     $$
+     meaning that if I measure the state $| \phi \rangle $, I will have a 50% probability
+     of finding it in the state $| \psi \rangle$. Recall that probabilities must always be smaller than 1 to make physical sense. Note also that I am using normalised vectors, you can check yourselves that
+     $$
+     \langle \psi |\psi \rangle =  \langle \phi | \phi\rangle = 1 \, ,
+     $$
+     as required to ensure the probabilistic description of the state vector.
+
+## 4.5. Problems
+
+**1)** [:grinning:] *The inner product*
+
+Two vectors in a three-dimensional complex vector space are defined by:
+$$
+|A\rangle =\begin{pmatrix}2\\-7i\\1\end{pmatrix},~~|B\rangle=\begin{pmatrix}1+3i\\4\\8\end{pmatrix}
+$$
+Let $a=6+5i$ and answer the following questions:
+
+*(a)*. Calculate $a|A\rangle$, $a |B\rangle$, and $a( |A\rangle+|B\rangle)$. Show that $a(|A\rangle+|B\rangle)=a|A\rangle+a|B\rangle$.
+
+*(b)*. Find the inner products $\langle A | B\rangle$ and $\langle B | A\rangle $. What is the relationship between them?
+
+*(c)* Find the norm of each vector.
+
+***
+  
+**2)**  [:grinning:] *A normalised vector*
+
+*(a)* Show that the two state vectors 
+$$
+|\Psi\rangle=\begin{pmatrix} 1/\sqrt{2}\\ 1/\sqrt{2}\end{pmatrix},~~|\Phi\rangle=\begin{pmatrix} 1/\sqrt{2}\\ -1/\sqrt{2}\end{pmatrix}
+$$
+are orthogonal to each other. Is the state vector $ |\Psi \rangle$ normalised?
+
+*(b)* Assume a vector
+$$
+|u \rangle =\begin{pmatrix} x\\ 3x\\-2x\end{pmatrix}
+$$
+where $x$ represents an unknown real number. Find the value of $x$ such that the state vector $|u\rangle$ is normalised.
+
+***
+    
+**3)** [:sweat:]  The *Cauchy-Schwartz inequality* states that
+$$
+\mid{\langle \Phi|\Psi\rangle}\mid^2 \leq \langle\Psi|\Psi\rangle \langle \Phi | \Phi\rangle
+$$
+Demonstrate this result using the properties of the inner product that we have covered in this lecture.
+
+***
+
+**4)** [:grinning:] *Basis vectors*
+
+*(a)* Show that the following vectors are linearly dependent:
+
+$$
+|a\rangle=\begin{pmatrix} 1\\ 2\\1\end{pmatrix},~~|b\rangle=\begin{pmatrix} 0\\ 1\\0\end{pmatrix},~~|c\rangle=\begin{pmatrix} -1\\ 0\\-1\end{pmatrix}
+$$
+
+*(b)* Is the following set of vectors linearly independent?
+
+$$
+|a\rangle=\begin{pmatrix} 2\\ 0\\0\end{pmatrix},~~|b\rangle=\begin{pmatrix} 0\\ -1\\0\end{pmatrix},~~|c\rangle=\begin{pmatrix} 0\\ 0\\-1\end{pmatrix}
+$$
+
+***
+
+**5)** [:grinning:] *Dirac algebra with bras and kets*
+
+Suppose that $|a\rangle $, $|b\rangle$, $|c\rangle$ is an orthonormal basis. In this basis let us define the following two state vectors:
+$$
+|\Psi\rangle=2i |a\rangle-3|b\rangle+i|c\rangle
+$$
+$$
+|\Phi\rangle=3|a\rangle-2|b\rangle+4|c\rangle
+$$
+
+*(a)* Find $\langle \Psi|$ and $\langle \Phi|$.
+
+*(b)* Compute the inner product $\langle \Phi | \Psi \rangle$.
+
+*(c)* Show that $\langle \Phi | \Psi\rangle=\langle \Psi|\Phi\rangle^*$.
+
+*(d)* Write the column vector representing the vector $|\Psi\rangle$ in the given basis. Then write down the row vector that represents $\langle \Psi|$ in the given basis as well.
+
+***
+
+**6)** [:sweat:] *The state vector for a spin half particle*
+
+The state vector for a spin half particle that passes through a magnetic field oriented in the direction $\hat{n}$ and exists with its spin component in the direction of the magnetic field, i.e. $S=\vec{S}\cdot\hat{n}=\frac{1}{2}\hbar$ is given by
+$$
+|S\rangle =\cos(\theta/2) |+\rangle +\sin(\theta/2) \, e^{i\phi} |-\rangle
+$$
+where $\hat{n}=\sin\theta \,\cos\phi \, \hat{i} +\sin\theta \, \sin\phi \,\hat{j}+\cos\theta \, \hat{k}$. 
+
+*(a)* What is the corresponding bra vector?
+
+*(b)* Show that this state is normalized to unity.
+
+*(c)* Identify the state $|S\rangle $ if $\hat{n}=\hat{i}, \hat{j},$ and $\hat{k}$.
+
+*(d)* Express $|S\rangle $ in terms of the basis states $|-\rangle ,\,|+\rangle $ in each case.
+
+***
+
+**7)** [:sweat:] *A particle in an infinite well*
+
+A particle of mass $m$ confined to move in an infinite well of width $L$ can have the energies $E_n=\pi^2\hbar^2n^2/2mL^2$ where $n=1,2,...$ We can specify the states of the particle in the well by the kets $| 1\rangle $, $|2\rangle $, $|3\rangle $, ... where $|n\rangle $ is the ket corresponding to the particle having the energy $E_n$. These states form a complete orthonormal set of basis states for the particle in the well.
+
+*(a)* What is the dimension of the state space for the particle?
+
+*(b)* State the orthonormality conditions for the kets $\{| 1\rangle,|2\rangle,|3\rangle,...\}$
+
+*(c)* A particle is prepared in the state
+$$
+|\psi\rangle=\frac{1}{3}|1\rangle+\frac{1}{3}(2+i)|2\rangle+\alpha|3\rangle.
+$$
+This state is normalized to unity. If the experiment is repeated 500 times under identical conditions, and the energy of the particle in the well is measured, roughly how many times will the particle be observed to have the energy $E_3$?
+  
+
diff --git a/docs/5_operators_QM.md b/docs/5_operators_QM.md
new file mode 100644
index 0000000000000000000000000000000000000000..1afd331b6f64256cacfc16ded67625d926dd8e1c
--- /dev/null
+++ b/docs/5_operators_QM.md
@@ -0,0 +1,387 @@
+---
+title: Operators quantum mechanics
+---
+
+# 5. Operators in quantum mechanics
+
+The lecture on operators in quantum mechanics consists of the following parts:
+
+- [5.1. Definition and properties of operators](#51-definition-properties-operators)
+
+- [5.2. Manipulating operators](#52-manipulating-operators)
+
+- [5.3. Projection operators](#53-projection-operators)
+
+- [5.4. The Hermitian adjoint](#54-the-hermitian-adjoint)
+
+- [5.5. Matrix representation of operators](#55-matrix-representation-of-operators)
+
+and at the end of the lecture notes, there is a set the corresponding exercises:
+
+- [5.6. Problems](#56-problems)
+
+*** 
+
+The contents of this lecture are supplemented with the following **videos**:
+
+- [1. Representation of an operator](https://www.dropbox.com/s/cg9s5hb8dtlkydh/linear_algebra-05.mov?dl=0)
+
+- [2. The action of an operator on kets in matrix representation](https://www.dropbox.com/s/74w7bvwq3o8xiam/linear_algebra-08.mov?dl=0)
+
+**The total length of the videos: ~5 minutes**
+
+***
+
+In the previous lecture, we presented the mathematical language to describe the *quantum states* of a physical system. We saw that the state of a quantum system is described by its *vector state* $|\Psi\rangle$, an element of a special complex vector space called the *Hilbert space*. We presented the Dirac notation and discussed that we can assign a *probabilistic interpretation* to vector states and their inner products. We also discussed their matrix representation and how we can express a state vector in terms of its components in a specific basis.
+
+Now, we need to introduce a concept and a mathematical language required to *extract information* about the physical properties of a system from its state vector, which we will denote by *observables*. We emphasize that this distinction between the *state of a quantum system* (given by the wave function) and the *observables*, which we can extract from it, is the novelty of quantum mechanics with respect to classical physics where this notion is absent. With this motivation, in order to represent fundamental physical quantities of a quantum system that we can measure; such as position, momentum, or energy, we need to introduce a special mathematical entity known as an *operator*.
+
+## 5.1. Definition and properties of operators
+
+Operators in quantum mechanics are mathematical entities  used to represent physical processes that result in the *change* of the state vector of the system, such as the evolution of these states with time. These operators can also represent physical properties of a system that can be experimentally measured (for example position, momentum, or energy), the **observables** associated to this quantum system. Note that each quantum system will have in general a different set of physical observables associated to it.
+
+!!! info "Operators in quantum mechanics"
+    An operator is a mathematical object that *acts* on the state vector of the system and produces another state vector. To be precise, if we denote an operator by $\hat{A}$ and $|\psi\rangle$ is an element of the Hilbert space of the system, then
+    $$\hat{A} |\psi\rangle = |\phi\rangle \, ,$$
+    where the state vector $|\phi\rangle$ *also* belongs to the same Hilbert space.
+
+There are many types of important operators in quantum mechanics. In this lecture, we will present some of these, such as the
+**unitary operators** that determine the time evolution of a quantum system and the **Hermitian operators** which can be assigned to
+physically observable properties of a system, such as momentum or energy. We will also discuss how we can manipulate operators and combine them in various ways.
+
+!!! info "Linear operators"
+    In this course, we are interested in the so-called *linear operators*, which are those operators $\hat{A}$ such that for any arbitrary pair of state vectors $|\psi_1\rangle$ and $|\psi_2\rangle$ and for any complex numbers $c_1$ and $c_2$ they satisfy *associative* and *distributive* properties, for instance
+    $$\hat{A}[c_1|\psi_1\rangle+c_2|\psi_2\rangle]=c_1\hat{A}|\psi_1\rangle+c_2\hat{A}|\psi_2\rangle \, .$$
+
+Linearity of operators has several important consequences. Recall that in the previous lecture we discussed that any state vector $|\psi\rangle$ can be expressed as a linear combination of a complete set of basis states $\{|\phi_i\rangle,i=1,2,3,...,n\}$ associated to this Hilbert space:
+$$|\psi\rangle=\sum_{i=1}^nc_i|\phi_i\rangle \, , \quad  c_i = \langle \phi_i | \psi\rangle \, ,$$
+where the values of the coefficients $c_i$ can be fixed thanks to the orthogonality properties of the basis, $\langle \phi_i | \phi_j\rangle=\delta_{ij} $.
+Then one can see that for linear operators the following applies 
+$$ \hat{A}|\psi\rangle=  \hat{A}\sum_{i=1}^nc_i|\phi_i\rangle =  \sum_{i=1}^nc_i ( \hat{A}|\phi_i\rangle ) \, .$$
+This result tells us that if we know the effects of the operator $\hat{A}$ for each of the elements of the basis $|\phi_i\rangle$,
+we can easily determine its effect on a *general state vector* $|\psi\rangle$ belonging to the same Hilbert space. 
+In other words, the action of the operator $\hat{A}$ on the basis vectors $\{\phi_i\rangle \}$ correlates with its action on any other state vector $|\psi\rangle$ to which the operator was applied. 
+
+Some other important properties of the operators can be stated as follows.
+!!! info "Properties of the operators"
+    1. If two operators $\hat{A}$ and $\hat{B}$ are such that
+        $$\hat{A}|\psi\rangle=\hat{B}|\psi\rangle \, , $$
+        for all state vectors $|\psi\rangle$ belonging to the Hilbert
+        space of the system, then these two operators must be *identical*:
+        $$ \hat{A}=\hat{B} \, .$$
+        Note that this is true only if the action of two operators
+        is identical for all elements of the Hilbert space.
+    2. Like in general vector spaces, in Hilbert spaces, we also have the identity (or unit) and zero (or null) operators defined as
+        - The **unit (or identity) operator** $\hat{I}$ is the operator that satisfies
+            $$\hat{I}|\psi\rangle=|\psi\rangle $$
+        - The **zero (or null) operator** $\hat{0}$ is the operator that satisfies
+            $$ \hat{0}|\psi\rangle=0$$
+        In both cases, these relations hold for all state vectors $|\psi\rangle$ of the Hilbert space $\mathcal{H}$.
+    
+## 5.2. Manipulating operators 
+
+We can combine and manipulate operators in various ways. In doing so, we should be careful because manipulations
+of operators can be quite different compared with manipulations of scalar complex numbers. 
+For example, if you have two complex numbers, the result of their multiplication does not depend on the order in which you multiply them, but for operators it does! As we will show, **in general, operators are non-commutative**, meaning that the order in which they are applied will vary the result of the operation. 
+
+As mentioned above, in these lectures, we will be focusing only on linear operators. For this class of operators, following operations are possible:
+
+!!! info "Addition of operators:" 
+    The sum of two operators $\hat{A}$ and $\hat{B}$ is defined by
+    $$(\hat{A}+\hat{B})|\psi\rangle=\hat{A}|\psi\rangle+\hat{B}|\psi\rangle \, ,$$
+    for all state vectors $|\psi\rangle$. The sum of two operators defines another operator, $\hat{C}$:
+    $$ 
+    \hat{C}|\psi\rangle=(\hat{A}+\hat{B})|\psi\rangle=\hat{A}|\psi\rangle+\hat{B}|\psi\rangle
+    $$
+    for all states $|\psi\rangle$, and so we can write
+    $$
+    \hat{C} = \hat{A} + \hat{B} \, .
+    $$
+    Note that when we express operator relations, such as this one, we are implicitly stating that they hold when these operators are applied to any of the state vectors $| \Psi \rangle$ of the Hilbert space $\mathcal{H}$.
+    
+!!! info "Multiplication of an operator by a complex number:"
+    If we have an operator that acts on a state vector as
+    $$\hat{A}|\psi\rangle=|\phi\rangle \, ,$$
+    then we can define the operator $\hat{C}=\lambda \hat{A}$, where $\lambda$ is a complex number as follows
+    $$\hat{C} |\psi\rangle= (\lambda \hat{A})|\psi\rangle=\lambda(\hat{A}|\psi\rangle)=\lambda |\phi\rangle \, .$$
+
+!!! info "Multiplication of operators"
+    Assume that an operator $\hat{A}$ acting on a ket vector $|\psi\rangle$ maps it into another ket vector $|\phi\rangle$ and that the operator $\hat{B}$  acting on $|\phi\rangle$ results in a third ket vector $|\rho\rangle$:
+    $$
+    \hat{B} \left( \hat{A}|\psi\rangle \right)=\hat{B}|\phi\rangle=|\rho\rangle \, .
+    $$
+    One can then define the product of the two operators as a new operator, $\hat{C}=\hat{B}\hat{A}$, such that its action on the initial ket vector $|\psi\rangle$ is defined as
+    $$ 
+    \hat{C}|\psi\rangle=\left( \hat{B}\hat{A} \right) |\psi\rangle = |\rho\rangle \, .
+    $$
+    Note that in general, multiplication of two operators is *non-commutative*, so the order in which we multiply $\hat{A}$ and $\hat{B}$ is important, and the operator $\hat{C}=\hat{B}\hat{A}$ will be different from $\hat{D}=\hat{A}\hat{B}$.
+
+!!! info "Commutator of two operators" 
+    The difference between a product of operators $\hat{B}\hat{A}$ and the product in the opposite order, namely $\hat{B}\hat{A}$, is defined as the *commutator* of these two operators: 
+    $$ [\hat{A},\hat{B}]\equiv \hat{A}\hat{B}-\hat{B}\hat{A} \, . $$
+    The commutator plays a fundamental role in the physical interpretation of quantum mechanics. 
+    In a nutshell, it tells us whether or not two observable properties of a system can be determined simultaneously with arbitrary precision according to the Heisenberg uncertainty relations. 
+    
+!!! note "Exercise"
+    Using the properties of the addition and multiplication of operators that we just discussed, you can check that the commutator satisfies the following properties:
+
+    1. $[\hat{A},\hat{B}]= -[\hat{B},\hat{A}] $
+
+    2. $[\hat{A},\alpha\hat{B}+\beta\hat{C}]=\alpha[\hat{A},\hat{B}]+\beta[\hat{A},\hat{C}] $
+
+    3. $[\hat{A}\hat{B},\hat{C}]=\hat{A}[\hat{B},\hat{C}] +[\hat{A},\hat{C}] \hat{B}$ 
+
+    4. $[\hat{A},[\hat{B},\hat{C}]]+[\hat{C},[\hat{A},\hat{B}]]+[\hat{B},[\hat{C},\hat{A}]]=0$
+
+## 5.3. Projection operators
+
+!!! info "Projection operator:"
+    An operator $\hat{A}$ with the property
+    $$ \hat{A}^2= \hat{A}\hat{A}= \hat{A} \, ,$$
+    which means that acting twice on a given state vector produces the same result as acting just once, is described as a *projection operator*.
+    Let us give an explicit example of such operator. Assume that we have an $n$-dimensional Hilbert space with a basis given by $\{|\phi_i\rangle\}$. We can then define the operator $\hat{B}_i$ as 
+    $$\hat{B}_i|\phi_j \rangle \equiv \delta_{ij}|\phi_j \rangle \, .$$ 
+
+Recall that as demonstrated above, once we indicate the behaviour of an operator
+for the basis vectors, we automatically know how it will act for any general
+state vector of the Hilbert space.
+
+!!! check "Example"
+    Let's demonstrate that this operator is a projection operator: 
+    $$ \left( \hat{B}_i\right)^2|\phi_j \rangle=\hat{B}_i\hat{B}_i|\phi_j \rangle=\delta_{ij}\hat{B}_i|\phi_j \rangle=\delta_{ij}^2|\phi_j \rangle = \delta_{ij}|\phi_j \rangle = \hat{B}_i|\phi_j \rangle  \, .$$
+    From this we can conclude that $\hat{B}_i^2=\hat{B}_i$, as expected for a projection operator, and where we have used that the square of the Kronecker delta is the same Kronecker delta itself.
+
+This projection operator has one important property. Let's act with $\hat{B}_i$ on an arbitrary vector $|\psi\rangle$ expanded in terms of the basis vectors $\{|\phi_j \rangle\}$:
+$$
+\hat{B}_i|\psi\rangle=\hat{B}_i\sum_{j=1}^n|\phi_j \rangle\langle \phi_j | \psi\rangle=\sum_{j=1}^n\left(\hat{B_i}|\phi_j \rangle\right) \langle \phi_j | \psi \rangle
+$$
+which implies that
+$$
+\hat{B}_i |\psi\rangle=\sum_{j=1}^n \delta_{ij}|\phi_j \rangle \langle \phi_ | \psi\rangle=|\phi_i\rangle\langle \phi_i | \psi\rangle \, .
+$$
+In other words, the operator $ \hat{B}_i$ *projects* the state vector $|\psi\rangle$ onto the direction given by the basis vector $|\phi_i\rangle$. We can clearly see in this case why these operators are called *projection operators*; They allow us to single out specific directions in the Hilbert space of our quantum system.
+
+## 5.4. The Hermitian adjoint
+
+When discussing vector spaces in quantum mechanics, we learned that for each vector state ket $|\Psi\rangle$, there exists the corresponding bra vector $\langle \Psi|$ which can be understood as its complex conjugate. When expressing $|\Psi\rangle$ as a column vector in terms of its components, $\langle \Psi|$ was the associated row
+ vector expressing the complex conjugate of its components. A similar discussion is required now in the case of operators.
+
+!!! warning "Warning" 
+    For an operator $\hat{A}$ such that $$\hat{A}|\psi\rangle=|\phi\rangle$$ holds true, the already familiar complex conjugation is in general not valid
+    $$\langle\psi|\hat{A}\neq \langle\phi |$$ 
+
+!!! info "Hermitian adjoint operator"
+    We can introduce another operator related to $\hat{A}$ and written as $\hat{A}^\dagger$ which has the following defining property
+    $$\hat{A}|\psi\rangle=|\phi\rangle\; \text{then}\; \langle \psi|\hat{A}^\dagger= \langle \phi|$$
+    The operator $\hat{A^\dagger}$ is known as the *Hermitian adjoint* of $\hat{A}$. 
+    
+    What is then the action of this Hermitian adjoint operator on a ket vector? We can consider the following product
+    $$
+    \langle\rho|\hat{A}|\psi\rangle=\langle \rho|(\hat{A}|\psi\rangle)=\langle\rho|\phi\rangle
+    $$
+    using that $\hat{A}|\psi\rangle=|\phi\rangle$. The complex conjugate of the previous expression yields:
+    $$
+    \langle \rho |\hat{A}|\psi\rangle^*=\langle \rho |\phi\rangle^*=\langle \phi |\rho\rangle
+    $$
+    and if $\langle\psi|\hat{A^\dagger}= \langle \phi|$, then
+    $$
+    \langle \rho|\hat{A}|\psi\rangle^*=\langle \phi|\rho\rangle=(\langle \psi |\hat{A^\dagger})|\rho\rangle=\langle \psi |\hat{A^\dagger}|\rho\rangle \, .
+    $$
+
+!!! warning ""
+    As we will see next, in quantum mechanics, we are interested in operators for which $\hat{A}=\hat{A}^\dagger$, that is where the operator coincides with its Hermitian adjoint.
+
+## 5.5. Matrix representation of operators
+ 
+In the previous lecture, we discussed the matrix representation of state vectors, a notation describing the elements of the Hilbert space assigned to a given quantum system. We will now show how one can also construct a matrix representation of *operators*.
+
+The starting point is an operator equation of the form
+$$
+\hat{A}|\psi\rangle=|\varphi\rangle \, ,
+$$
+where $|\psi\rangle$ and $|\varphi\rangle $ are state vectors. This equation can be rewritten using the identity operator given by the basis elements 
+$$
+\hat{I} = \sum_{i=1}^n |\phi_i\rangle\langle \phi_i| \, ,
+$$
+and rewritten as
+$$
+|\varphi\rangle=\hat{A}|\psi\rangle=\hat{A}\sum_{i=1}^n |\phi_i\rangle\langle \phi_i|\psi\rangle=
+\sum_{i=1}^n \left( \hat{A}|\phi_i\rangle\right) \langle \phi_i|\psi\rangle
+$$
+
+We can now evaluate the inner product between the basis vector $| \phi_j\rangle$
+and the state vector $ |\varphi \rangle$ to obtain
+$$
+\langle {\phi_j}|\varphi\rangle=\sum_{i=1}^n \left(\langle \phi_j| \hat{A}|\phi_i\rangle
+\right) \langle \phi_i|\psi\rangle \, ,
+$$
+which can also be expressed as a matrix multiplication equation in terms of its components using
+$$
+\varphi_j=\sum_{i=1}^n {A}_{ji}\, \psi_i \, ,
+$$
+where we define
+$$
+{A}_{ji} \equiv \langle \phi_j| \hat{A}|\phi_i\rangle \, .
+$$
+
+!!! info "Matrix representation of operators"
+    The derivation above demonstrates that an operation equation of the form $|\varphi\rangle = \hat{A}|\psi\rangle$ can be expressed in terms of a matrix representation
+    $$
+    \begin{pmatrix} \varphi_1\\\varphi_2\\\varphi_3 \\\vdots\end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} & A_{13} & \ldots \\ A_{21} & A_{22} & A_{23} & \ldots\\A_{31} & A_{32} & A_{33} & \ldots \\\vdots & \vdots & \vdots & \end{pmatrix} \begin{pmatrix} \psi_1\\\psi_2\\\psi_3 \\\vdots\end{pmatrix}
+    $$
+    where the operator $\hat{A}$ is represented by a (square) matrix
+    $$
+    \hat{A} = \begin{pmatrix} A_{11} & A_{12} & A_{13} & \ldots \\ A_{21} & A_{22} & A_{23} & \ldots\\A_{31} & A_{32} & A_{33} & \ldots \\\vdots & \vdots & \vdots & \end{pmatrix} 
+    $$
+
+Like in the case of regular vector spaces, when we represent state vectors as operators in terms of components (matrix representation), we are implicitly or explicitly assuming a choice of basis. If we change the basis, the values of the components will change too. 
+In other words, while the operator equation $|\varphi\rangle = \hat{A}|\psi\rangle$ is identical in any chosen basis, once we express it as
+$$
+\begin{pmatrix} \varphi_1\\\varphi_2\\\varphi_3 \\\vdots\end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} & A_{13} & \ldots \\ A_{21} & A_{22} & A_{23} & \ldots\\A_{31} & A_{32} & A_{33} & \ldots \\\vdots & \vdots & \vdots & \end{pmatrix} \begin{pmatrix} \psi_1\\\psi_2\\\psi_3 \\\vdots\end{pmatrix}
+$$
+then the specific values of  *e.g.* $A_{11}, A_{12}, ...$ will be basis-dependent.
+
+Having demonstrated that we can represent state vectors and operators in term of vectors and matrices, we can now highlight some of the most important *properties of the matrix representation*.
+
+!!! info "Properties of matrix representation of operators"
+    1. **Equality**: two operators are said to be equal if their corresponding operator matrix elements are equal, for instance $\hat A = \hat B$ if $A_{ij}=B_{ij}$ for all possible values of $i$ and $j$.
+
+    2. **Identity  operator**: the unit (or identity) operator is represented by $\hat1$ and satisfies $\hat1|\psi\rangle=|\psi\rangle$ for all possible state vectors $|\psi\rangle$. The diagonal elements of the  matrix representation of the identity operator $\hat1$ are all unity while the off-diagonal elements vanish:  $1_{ij}=\delta_{ij}$. This means that for a $n$-dimensional Hilbert space the unit operator is the $n$-dimensional identity matrix. Note that the unit operator has the same form in all representations irrespective of the specific choice of basis states.
+
+    3. **Null operator**: the zero operator $\hat0$ is such as $\hat{0}|\psi\rangle=0$ for all $\psi$. Its matrix elements are all zero, $0_{ij}=0$.
+
+    4. **Addition of operators**: given two operators $\hat{A}$ and $\hat{B}$ with matrix elements $A_{ij}$ and $B_{ij}$, then the matrix elements of their sum $\hat{A}+\hat{B}$ are given by
+    $$
+    C_{ij}=A_{ij}+B_{ij} \, .
+    $$
+    
+    5. **Multiplication by a complex number**: if $\lambda$ is a complex number, then the matrix elements of the operator $\hat{C}=\lambda \hat{A}$ are given by
+    $$
+    C_{ij}=\lambda A_{ij} \, .
+    $$
+
+    6. **Product of operators**: given two operators $\hat{A}$ and $\hat{B}$ with matrix elements $A_{ij}$ and $B_{ij}$, then the matrix elements of their operator product $\hat{P}=\hat{A}\hat{B}$ are given by
+    $$
+    P_{ij}=\sum_{k=1}^nA_{ik}B_{kj} \, ,
+    $$
+    which as you might recall is nothing but the standard rule for matrix multiplication. So once we express operators in their matrix representation, we can multiply them by following standard matrix multiplication. 
+
+    7. **Commutator**: in the same way as matrix multiplication is not commutative, also  operator multiplication is *not commutative*:
+    $$
+    \hat{A}\hat{B}\;\neq\hat{B}\hat{A}
+    $$
+    As mentioned above, the difference, $\hat{A}\hat{B}-\hat{B}\hat{A}$ is known as the *commutator* of $\hat{A}$ and $\hat{B}$ and is represented by $[\hat{A},\hat{B}]$. In terms of the matrix representation, the  components of the commutator of $\hat{A}$ and $\hat{B}$
+    (which is also a matrix itself) will be given by
+    $$
+    [\hat{A},\hat{B}]_{ij}= \sum_{k=1}^nA_{ik}B_{kj} - \sum_{k=1}^nB_{ik}A_{kj} =
+    \sum_{k=1}^n\left( A_{ik}B_{kj} - B_{ik}A_{kj} \right) \, .
+    $$  
+
+### Matrix representation of Hermitian operators
+
+As discussed above, Hermitian operators play a central role in the physical interpretation of quantum systems.
+We can now provide the explicit expression of the Hermitian operators in the matrix representation. 
+
+!!! info "Matrix representation of Hermitian operators"
+    Let us assume that we have an operator $\hat{A}$ in an $n$-dimensional Hilbert space
+    with matrix elements $A_{ij}$ defined with respect to a set of orthonormal basis states, $\{ |\phi_i\rangle; i=1,2,\ldots\,n\}$. 
+    From its matrix representation one can construct a new operator by taking the transpose and complex conjugate of the original matrix, that is:
+    $$
+    \begin{pmatrix} A_{11} & A_{12} & A_{13} & \ldots \\ A_{21} & A_{22} & A_{23} & \ldots\\A_{31} & A_{32} & A_{33} & \ldots \\\vdots & \vdots & \vdots & \end{pmatrix}\rightarrow \begin{pmatrix} A_{11}^* & A_{21}^* & A_{31}^* & \ldots \\ A_{12}^* & A_{22}^* & A_{32}^* & \ldots\\A_{13}^* & A_{23}^* & A_{33}^* & \ldots \\\vdots & \vdots & \vdots & \end{pmatrix}
+    $$
+    This new matrix corresponds to the matrix representation of a new operator that will be denoted by $\hat{A}^\dagger$.
+     
+    This new operator is called the **Hermitian adjoint** of the operator $\hat{A}$.
+
+!!! warning "Hermitian operators are equal to their adjoint version"
+    At the operator level, we can write that Hermitian operators satisfy $\hat{A}=\hat{A}^\dagger$.
+    From the matrix representation giving the expression in terms of its components, the condition for a Hermitian operator will therefore read
+    $$
+    \begin{pmatrix} A_{11} & A_{12} & A_{13} & \ldots \\ A_{21} & A_{22} & A_{23} & \ldots\\A_{31} & A_{32} & A_{33} & \ldots \\\vdots & \vdots & \vdots & \end{pmatrix} = \begin{pmatrix} A_{11}^* & A_{21}^* & A_{31}^* & \ldots \\ A_{12}^* & A_{22}^* & A_{32}^* & \ldots\\A_{13}^* & A_{23}^* & A_{33}^* & \ldots \\\vdots & \vdots & \vdots & \end{pmatrix} \, ,
+    $$
+    which can be expressed in a more compact way as
+    $$
+    A_{ij} = A_{ji}^* \, , \quad i,j=1,\ldots,n \, .
+    $$
+    Any operator which satisfies this condition will be a Hermitian operator. Note that the Hermiticity of an operator is a property which is independent of the specific choice of basis.
+
+***
+## 5.6. Problems
+
+1. [:grinning:] *Commutator algebra*
+
+    Prove that $[\hat{A},\hat{B} \hat{C}]=[\hat{A}, \hat{B}] \hat{C}+\hat{B} [\hat{A}, \hat{C}]$.
+
+2. [:grinning:] *The commutator*
+    
+    Let 
+    $$
+    \hat{A}=\begin{pmatrix} -1&2i&0\\0&4&0\\1&0&1\end{pmatrix},~~~~\hat{B}=\begin{pmatrix} 0&2&i\\-i&2i&0\\0&1&4\end{pmatrix}
+    $$
+
+    Do $\hat{A}$ and $\hat{B}$ commute?
+
+3. [:grinning:] *Linear operators*
+
+    Suppose that in an orthonormal basis given by $\{|a\rangle, |b\rangle, |c \rangle\}$ an operator $\hat{A}$ acts as follows:
+    $$\hat{A}|{a}\rangle=2|{a}\rangle\,,\quad \hat{A}|{b}\rangle=3|{a}\rangle-i|{c}\rangle\, , \quad \hat{A}|{c}\rangle=-|{b}\rangle$$
+    Determine the matrix representation of the operator $\hat{A}$.
+
+4. [:grinning:] *Calculating expectation values of operators*
+
+    The expectation value of an operator $\hat{A}$ with respect to a state $|{\Psi}\rangle$ is given by 
+    $$<\hat{A}>=\langle{\Psi}|\hat{A}|{\Psi}\rangle \, .$$
+    A particle is in a state $|{\Psi}\rangle=2i|{a}\rangle-|{b}\rangle+4i|{c}\rangle$
+    and an operator $\hat{A}=|{a}\rangle\langle{a}|-2i|{b}\rangle\langle{b}|+|{c}\rangle\langle{c}|$. 
+    
+    (The basis is orthonormal).   
+    
+    Find the expectation value $<\hat{A}>$ in this state.
+
+5. [:smirk:] *The Hermitian conjugate of an operator*
+
+    Consider that the matrix representation of the operator $\hat{A}$ is given by:
+    $$\hat{A}=\begin{pmatrix}1&0&-3i\\3&5&0\\3i&0&-2 \end{pmatrix}$$
+    and the following two state vectors from the same Hilbert space are given by:
+    $$|{\Psi}\rangle=\begin{pmatrix}2\\3i\\-1 \end{pmatrix}\, ,\quad |{\Phi}\rangle=\begin{pmatrix}0\\-1\\1 \end{pmatrix}\, .$$
+
+    **(a)** Find the result of $\hat{A}|{\Psi}\rangle$ and $\hat{A}|{\Phi}\rangle$.
+
+    **(b)** Find the Hermitian conjugates $|{\Psi}\rangle^\dagger$ and $|{\Phi}\rangle^\dagger$, and use these to calculate the inner products between the two state vectors $\langle{\Psi}|{\Phi}\rangle$ and $\langle{\Phi}|{\Psi}\rangle$.
+
+6. [:grinning:] *The Hadamard gate*
+
+    An important operator used in quantum computation is the *Hadamard gate*, which is represented by the matrix:
+    $$\hat{H}=\frac{1}{\sqrt{2}}\begin{pmatrix}1&1\\1&-1\end{pmatrix}$$. 
+
+    **(a)** Discuss whether or not $\hat{H}$ is Hermitian or unitary.
+
+    **(b)** Evaluate how the Hadamard gate acts upon the *up* and *down* basis states of the system
+    $$|+\rangle=\begin{pmatrix}1 \\ 0  \end{pmatrix}\, ,\quad |-\rangle=\begin{pmatrix}0\\1 \end{pmatrix}\, ,$$
+    and discuss the interpretation of these results.
+
+7. [:smirk:] *Spin-$1/2$ system*
+
+    Consider two vectors
+    $$|a\rangle=\frac{1}{\sqrt 2} \left( |-\rangle-i|+\rangle \right) $$
+    $$|b\rangle=\frac{1}{\sqrt 2} \left(|-\rangle +i|+\rangle \right)$$
+    where $|\pm \rangle$ are the basis vectors for a spin-half system, and the operator $\hat{A}$ defined by
+    $$\hat{A}|\pm\rangle=\pm \frac{1}{2} i \hbar|\mp\rangle$$
+
+    Note: the basis states are $$|+\rangle=\begin{pmatrix}1 \\ 0  \end{pmatrix}\, ,\quad |-\rangle=\begin{pmatrix}0\\1 \end{pmatrix}\, ,$$
+
+    **(a)** Express the state vectors $|a\rangle$ and $|b\rangle$ as column vectors.
+
+    **(b)** Write down the corresponding bra vectors as row vectors.
+
+    **(c)** Calculate the inner products $\langle a|b\rangle$ and $\langle b|a\rangle$.
+
+    **(d)** Write this operator as a matrix in the $\{|+\rangle,|-\rangle\}$ representation.
+
+    **(e)** Calculate $\hat{A}|a\rangle$ using the matrix representation of $\hat{A}$ and the column representation of $|a\rangle$.
+
+    **(f)** Calculate $\langle b|\hat{A}$ using the matrix representation of $\hat{A}$ and the row representation of $\langle b|$.
+
+  
+  
+  
diff --git a/docs/6_eigenvectors_QM.md b/docs/6_eigenvectors_QM.md
new file mode 100644
index 0000000000000000000000000000000000000000..c1bf01c5c533c252ab2e84fb8b86c93ebf503712
--- /dev/null
+++ b/docs/6_eigenvectors_QM.md
@@ -0,0 +1,269 @@
+---
+title: Eigenvalues and eigenvectors
+---
+
+# 6. Eigenvalues and eigenvectors
+
+The lecture on eigenvalues and eigenvectors consists of the following parts:
+
+- [6.1. Eigenvalue equations in linear algebra](#61-eigenvalue-equations-in-linear-algebra)
+
+- [6.2. Eigenvalue equations in quantum mechanics](#62-eigenvalue-equations-in-quantum-mechanics)
+
+and at the end of the lecture notes, there is a set of corresponding exercises:
+
+- [6.3. Problems](#63-problems)
+
+***
+
+The contents of this lecture are summarised in the following **video**:
+
+- [Eigenvalues and eigenvectors](https://www.dropbox.com/s/n6hb5cu2iy8i8x4/linear_algebra_09.mov?dl=0)
+
+*The total length of the videos: ~3 minutes 30 seconds*
+
+***
+
+In the previous lecture, we discussed a number of *operator equations*, which have the form
+$$
+\hat{A}|\psi\rangle=|\varphi\rangle \, ,
+$$
+where $|\psi\rangle$ and $|\varphi\rangle$ are state vectors
+belonging to the Hilbert space of the system $\mathcal{H}$.
+
+!!! info "Eigenvalue equation:"
+    A specific class of operator equations, which appear frequently in quantum mechanics, consists of equations in the form
+    $$
+    \hat{A}|\psi\rangle= \lambda_{\psi}|\psi\rangle \, ,
+    $$
+    where $\lambda_{\psi}$ is a scalar (in general complex). These are equations where the action of the operator $\hat{A}$
+    on the state vector $|\psi\rangle$ returns *the same state vector* multiplied by the scalar $\lambda_{\psi}$. 
+    This type of operator equations are known as *eigenvalue equations* and are of great importance for the description of quantum systems.
+
+In this lecture, we present the main ingredients of these equations and how we can apply them to quantum systems.
+
+##6.1. Eigenvalue equations in linear algebra
+
+First of all, let us review eigenvalue equations in linear algebra. Assume that we have a (square) matrix $A$ with dimensions $n\times n$ and $\vec{v}$ is a column vector in $n$ dimensions. The corresponding eigenvalue equation will be of form
+$$
+A \vec{v} =\lambda \vec{v} .
+$$
+with $\lambda$ being a scalar number (real or complex, depending on the type
+of vector space). We can express the previous equation in terms of its components,
+assuming as usual some specific choice of basis, by using
+the rules of matrix multiplication:
+
+!!! info "Eigenvalue equation: Eigenvalue and Eigenvector"
+    $$
+    \sum_{j=1}^n A_{ij} v_j = \lambda v_i \, .
+    $$
+    The scalar $\lambda$ is known as the *eigenvalue* of the equation, while the vector $\vec{v}$ is known as the associated *eigenvector*.
+    The key feature of such equations is that applying a matrix $A$ to the vector $\vec{v}$ returns *the original vector* up to an overall rescaling, $\lambda \vec{v}$. 
+
+!!! warning "Number of solutions"
+    In general, there will be multiple solutions to the eigenvalue equation $A \vec{v} =\lambda \vec{v}$, each one characterised by an specific eigenvalue and eigenvectors. Note that in some cases one has  *degenerate solutions*, whereby a given matrix has two or more eigenvectors that are equal.
+
+!!! tip "Characteristic equation:"
+    In order to determine the eigenvalues of the matrix $A$, we need to evaluate the solutions of the so-called *characteristic equation*
+    of the matrix $A$, defined as
+    $$
+    {\rm det}\left( A-\lambda \mathbb{I} \right)=0 \, ,
+    $$
+    where $\mathbb{I}$ is the identity matrix of dimensions $n\times n$, and ${\rm det}$ is the determinant.
+
+This relation follows from the eigenvalue equation in terms of components
+$$
+\begin{align}
+\sum_{j=1}^n A_{ij} v_j &= \lambda v_i \, , \\
+\to \quad \sum_{j=1}^n A_{ij} v_j - \sum_{j=1}^n\lambda \delta_{ij} v_j &=0 \, ,\\
+\to \quad \sum_{j=1}^n\left( A_{ij} - \lambda \delta_{ij}\right) v_j &=0 \, .
+\end{align}
+$$
+Therefore, the eigenvalue condition can be written as a set of coupled linear equations
+$$
+\sum_{j=1}^n\left( A_{ij} - \lambda \delta_{ij}\right) v_j =0 \, , \qquad i=1,2,\ldots,n\, ,
+$$
+which only admit non-trivial solutions if the determinant of the matrix $A-\lambda\mathbb{I}$ vanishes
+(the so-called Cramer's condition), thus leading to the characteristic equation.
+
+Once we have solved the characteristic equation, we end up with $n$ eigenvalues $\lambda_k$, $k=1,\ldots,n$.
+  
+We can then determine the corresponding eigenvector
+$$
+\vec{v}_k = \left( \begin{array}{c} v_{k,1}  \\ v_{k,2} \\ \vdots \\ v_{k,n} \end{array} \right) \, ,
+$$
+by solving the corresponding system of linear equations
+$$
+\sum_{j=1}^n\left( A_{ij} - \lambda_k \delta_{ij}\right) v_{k,j} =0 \, , \qquad i=1,2,\ldots,n\, ,
+$$
+
+Let us remind ourselves that in $n=2$ dimensions the determinant of  a matrix
+is evaluated as
+$$
+{\rm det}\left( A \right) = \left|  \begin{array}{cc} A_{11}  & A_{12} \\ A_{21}  &  A_{22} \end{array} \right|
+= A_{11}A_{22} - A_{12}A_{21} \, ,
+$$
+while the corresponding expression for a matrix belonging to a vector
+space in $n=3$ dimensions in terms of the previous expression will be given as
+$$
+{\rm det}\left( A \right) = \left|  \begin{array}{ccc} A_{11}  & A_{12}  & A_{13} \\ A_{21}  &  A_{22}
+&  A_{23} \\ A_{31}  &  A_{32}
+&  A_{33}  \end{array} \right| = 
+\begin{array}{c} 
++ A_{11} \left|  \begin{array}{cc} A_{22}  & A_{23} \\ A_{32}  &  A_{33} \end{array} \right| \\
+- A_{12} \left|  \begin{array}{cc} A_{21}  & A_{23} \\ A_{31}  &  A_{33} \end{array} \right| \\
++ A_{13} \left|  \begin{array}{cc} A_{21}  & A_{22} \\ A_{31}  &  A_{32} \end{array} \right|
+\end{array}
+$$
+
+!!! check "Example"
+    Let us illustrate how to compute eigenvalues and eigenvectors by considering a $n=2$ vector space. 
+    
+    Consider the following matrix
+    $$
+    A = \left( \begin{array}{cc} 1  &  2 \\ -1  &  4 \end{array} \right) \, ,
+    $$
+    which has associated the following characteristic equation
+    $$
+    {\rm det}\left( A-\lambda\cdot I \right)  = \left| \begin{array}{cc} 1-\lambda  &  2 \\ -1  &  4-\lambda \end{array} \right| = (1-\lambda)(4-\lambda)+2 = \lambda^2 -5\lambda + 6=0 \, .
+    $$
+    This is a quadratic equation which we know how to solve exactly; the two eigenvalues are $\lambda_1=3$ and $\lambda_2=2$.
+
+    Next, we can determine the associated eigenvectors $\vec{v}_1$ and $\vec{v}_2$. For the first one, the equation to solve is
+    $$
+    \left( \begin{array}{cc} 1  &  2 \\ -1  &  4 \end{array} \right)
+    \left( \begin{array}{c} v_{1,1}  \\ v_{1,2}  \end{array} \right)=\lambda_1
+    \left( \begin{array}{c} v_{1,1}  \\ v_{1,2}  \end{array} \right) = 3 \left( \begin{array}{c} v_{1,1}  \\ v_{1,2}  \end{array} \right) 
+    $$
+    from where we find the condition that $v_{1,1}=v_{1,2}$. 
+    
+    An important property of eigenvalue equations is that the eigenvectors are only fixed up to an  *overall normalisation condition*. 
+    
+    This should be clear from its definition: if a vector $\vec{v}$ satisfies $A\vec{v}=\lambda\vec{v} $,
+    then the vector $\vec{v}'=c \vec{v}$ with $c$ some constant will also satisfy the same equation. So then we find that the eigenvalue $\lambda_1$ has an associated eigenvector
+    $$
+    \vec{v}_1 = \left( \begin{array}{c} 1   \\ 1 \end{array} \right) \, ,
+    $$
+    and indeed one can check that
+    $$
+    A\vec{v}_1 = \left( \begin{array}{cc} 1  &  2 \\ -1  &  4 \end{array} \right)
+    \left( \begin{array}{c} 1   \\ 1 \end{array} \right) = \left( \begin{array}{c} 3  \\ 3 \end{array} \right)=
+    3 \vec{v}_1 \, ,
+    $$
+    as we intended to demonstrate.
+
+!!! note "Exercise"
+    As an exercise, try to obtain the expression of the eigenvector
+    corresponding to the second eigenvalue $\lambda_2=2$.
+
+
+##6.2. Eigenvalue equations in quantum mechanics
+
+We can now extend the ideas of eigenvalue equations from linear algebra to the case of quantum mechanics.
+The starting point is the eigenvalue equation for the operator $\hat{A}$,
+$$
+\hat{A}|\psi\rangle= \lambda_{\psi}|\psi\rangle \, ,
+$$
+where the vector state $|\psi\rangle$ is the eigenvector of the equation
+and $ \lambda_{\psi}$ is the corresponding eigenvalue, in general a complex scalar.
+    
+In general this equation will have multiple solutions, which for a Hilbert space $\mathcal{H}$ with $n$ dimensions can be labelled as
+$$
+\hat{A}|\psi_k\rangle= \lambda_{\psi_k}|\psi_k\rangle \, , \quad k =1,\ldots, n \, .
+$$
+  
+In order to determine the eigenvalues and eigenvectors of a given operator $\hat{A}$, we will have to solve the
+corresponding eigenvalue problem for this operator, what we called above as the *characteristic equation*.
+This is most efficiently done in the matrix representation of this operation, where we have
+that the above operator equation can be expressed in terms of its components as
+$$
+\begin{pmatrix} A_{11} & A_{12} & A_{13} & \ldots \\ A_{21} & A_{22} & A_{23} & \ldots\\A_{31} & A_{32} & A_{33} & \ldots \\\vdots & \vdots & \vdots & \end{pmatrix} \begin{pmatrix} \psi_{k,1}\\\psi_{k,2}\\\psi_{k,3} \\\vdots\end{pmatrix}=  \lambda_{\psi_k}\begin{pmatrix} \psi_{k,1}\\\psi_{k,2}\\\psi_{k,3} \\\vdots\end{pmatrix} \, .
+$$
+
+As discussed above, this condition is identical to solving a set of linear equations
+for the form
+$$
+\begin{pmatrix} A_{11}- \lambda_{\psi_k} & A_{12} & A_{13} & \ldots \\ A_{21} & A_{22}- \lambda_{\psi_k} & A_{23} & \ldots\\A_{31} & A_{32} & A_{33}- \lambda_{\psi_k} & \ldots \\\vdots & \vdots & \vdots & \end{pmatrix}
+\begin{pmatrix} \psi_{k,1}\\\psi_{k,2}\\\psi_{k,3} \\\vdots\end{pmatrix}=0 \, .
+$$
+
+!!! info "Cramer's rule"
+    This set of linear equations only has a non-trivial set of solutions provided that
+    the determinant of the matrix vanishes, as follows from the Cramer's condition:
+    $$
+    {\rm det} \begin{pmatrix} A_{11}- \lambda_{\psi} & A_{12} & A_{13} & \ldots \\ A_{21} & A_{22}- \lambda_{\psi} & A_{23} & \ldots\\A_{31} & A_{32} & A_{33}- \lambda_{\psi} & \ldots \\\vdots & \vdots & \vdots & \end{pmatrix}=
+    \left|  \begin{array}{cccc}A_{11}- \lambda_{\psi} & A_{12} & A_{13} & \ldots \\ A_{21} & A_{22}- \lambda_{\psi} & A_{23} & \ldots\\A_{31} & A_{32} & A_{33}- \lambda_{\psi} & \ldots \\\vdots & \vdots & \vdots & \end{array} \right| = 0
+    $$
+    which in general will have $n$ independent solutions, which we label as $\lambda_{\psi,k}$.
+
+Once we have solved the $n$ eigenvalues $\{ \lambda_{\psi,k} \} $, we can insert each
+of them in the original evolution equation and determine the components of each of the eigenvectors,
+which we can express as columns vectors
+$$
+|\psi_1\rangle = \begin{pmatrix} \psi_{1,1} \\  \psi_{1,2} \\  \psi_{1,3} \\ \vdots \end{pmatrix} \,, \quad
+|\psi_2\rangle = \begin{pmatrix} \psi_{2,1} \\  \psi_{2,2} \\  \psi_{2,3} \\ \vdots \end{pmatrix} \,, \quad \ldots \, , |\psi_n\rangle = \begin{pmatrix} \psi_{n,1} \\  \psi_{n,2} \\  \psi_{n,3} \\ \vdots \end{pmatrix} \, .
+$$
+
+!!! tip "Orthogonality of eigenvectors"
+    An important property of eigenvalue equations is that if you have two eigenvectors
+    $ |\psi_i\rangle$ and $ |\psi_j\rangle$ that have associated *different* eigenvalues,
+    $\lambda_{\psi_i} \ne \lambda_{\psi_j}  $, then these two eigenvectors are orthogonal to each
+    other, that is
+    $$
+    \langle \psi_j | \psi_i\rangle =0 \, \quad {\rm for} \quad {i \ne j} \, .
+    $$
+    This property is extremely important, since it suggest that we could use the eigenvectors
+    of an eigenvalue equation as a *set of basis elements* for this Hilbert space.
+
+Recall from the discussions of eigenvalue equations in linear algebra that
+the eigenvectors $|\psi_i\rangle$ are defined *up to an overall normalisation constant*. Clearly, if $|\psi_i\rangle$ is a solution of $\hat{A}|\psi_i\rangle = \lambda_{\psi_i}|\psi_i\rangle$
+then $c|\psi_i\rangle$ will also be a solution, with $c$ being a constant. In the context of quantum mechanics, we need to choose this overall rescaling constant to ensure that the eigenvectors are normalised, thus they satisfy
+$$
+\langle \psi_i | \psi_i\rangle = 1 \, \quad {\rm for~all}~i \, .
+$$
+With such a choice of normalisation, one says that the eigenvectors in a set
+are *orthogonal* among them.
+
+!!! tip "Eigenvalue spectrum and degeneracy"
+    The set of all eigenvalues of an operator is called the *eigenvalue spectrum* of an operator. Note that different eigenvectors can also have the same eigenvalue. If this is the case the eigenvalue is said to be *degenerate*.
+
+***
+
+##6.3. Problems
+
+1. *Eigenvalues and eigenvectors I* 
+
+    Find the characteristic polynomial and eigenvalues for each of the following matrices,
+    $$A=\begin{pmatrix} 5&3\\2&10 \end{pmatrix}\,  \quad
+    B=\begin{pmatrix} 7i&-1\\2&6i \end{pmatrix} \, \quad C=\begin{pmatrix} 2&0&-1\\0&3&1\\1&0&4 \end{pmatrix}$$
+
+2. *Hamiltonian*
+
+    The Hamiltonian for a two-state system is given by 
+    $$H=\begin{pmatrix} \omega_1&\omega_2\\  \omega_2&\omega_1\end{pmatrix}$$
+    A basis for this system is 
+    $$|{0}\rangle=\begin{pmatrix}1\\0  \end{pmatrix}\, ,\quad|{1}\rangle=\begin{pmatrix}0\\1  \end{pmatrix}$$
+    Find the eigenvalues and eigenvectors of the Hamiltonian $H$, and express the eigenvectors in terms of $\{|0 \rangle,|1\rangle \}$
+
+3. *Eigenvalues and eigenvectors II*
+
+    Find the eigenvalues and eigenvectors of the matrices
+    $$A=\begin{pmatrix} -2&-1&-1\\6&3&2\\0&0&1 \end{pmatrix}\, \quad B=\begin{pmatrix} 1&1&2\\2&2&2\\-1&-1&-1 \end{pmatrix} $$.
+
+4. *The Hadamard gate*
+
+    In one of the problems of the previous section we discussed that an important operator used in quantum computation is the *Hadamard gate*, which is represented by the matrix:
+    $$\hat{H}=\frac{1}{\sqrt{2}}\begin{pmatrix}1&1\\1&-1\end{pmatrix} \, .$$
+    Determine the eigenvalues and eigenvectors of this operator.
+
+5. *Hermitian matrix*
+
+    Show that the Hermitian matrix
+    $$\begin{pmatrix} 0&0&i\\0&1&0\\-i&0&0 \end{pmatrix}$$
+    has only two real eigenvalues and find and orthonormal set of three eigenvectors.
+
+6. *Orthogonality of eigenvectors*
+
+    Confirm, by explicit calculation, that the eigenvalues of the real, symmetric matrix
+    $$\begin{pmatrix} 2&1&2\\1&2&2\\2&2&1 \end{pmatrix}$$
+    are real, and its eigenvectors are orthogonal.
diff --git a/docs/7_differential_equations_1.md b/docs/7_differential_equations_1.md
new file mode 100644
index 0000000000000000000000000000000000000000..ea9d3d4429a24455123d18cccaf7cc3b6788453b
--- /dev/null
+++ b/docs/7_differential_equations_1.md
@@ -0,0 +1,931 @@
+---
+title: Differential Equations
+---
+
+#7. Differential equations: Part 1
+
+The first lecture on differential equations consists of three parts, each with a video embedded in the paragraph:
+
+- [7.1. First examples of differential equations](#71-first-examples-of-differential-equations-definitions-and-strategies)
+- [7.2. Theory of systems of first-order differential equations](#72-theory-of-systems-of-differential-equations)
+- [7.3. Solving homogeneous first-order differential equations with constant coefficients](#73-solving-homogeneous-linear-system-with-constant-coefficients)
+
+**Total video length: 1 hour 15 minutes 4 seconds**
+
+and at the end of the lecture notes, there is a set of corresponding exercises:
+
+- [7.4. Problems](#74-problems)
+
+***
+
+##7.1. First examples of differential equations: Definitions and strategies
+
+<iframe width="100%" height=315 src="https://www.youtube-nocookie.com/embed/IUr38H4dcWI?rel=0" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
+
+###7.1.1. Definitions
+
+A differential equation or DE is any equation which involves both a function and a
+derivative of that function. In this lecture, we will be focusing on 
+*Ordinary Differential Equations* (ODEs), meaning that our equations will involve 
+functions of one independent variable and hence any derivatives will be full 
+derivatives. Equations which involve a function of several independent variables
+and their partial derivatives are called *Partial Differential Equations* (PDEs); they will 
+be introduced in the follow-up lecture. 
+
+We consider functions $x(t)$ and define $\dot{x}(t)=\frac{dx}{dt}$, 
+$x^{(n)}(t)=\frac{d^{n}x}{dt^{n}}$. An $n$*-th* order differential equation is 
+an equation of the form:
+
+$$x^{(n)}(t) = f(x^{(n-1)}(t), \cdots, x(t), t).$$ 
+
+Typically, $n \leq 2$. Such an equation will usually be presented with a set of 
+initial conditions,
+
+$$x^{(n-1)}(t_{0}) = x^{(n-1)}_{0}, \cdots, x(t_0)=x_0. $$
+
+This is because to fully specify the solution of an $n$*-th* order differential 
+equation, $n$ initial conditions are necessary (we need to specify the value of $n-1$ derivatives
+of $x(t)$ and as well the value of the function $x(t)$ for some  $t_0$). To understand why we need 
+initial conditions, look at the following example.
+
+!!! check "Example: Initial conditions"
+
+    Consider the following calculus problem,
+    
+    $$\dot{x}(t)=t. $$ 
+
+    By integrating, one finds that the solution to this equation is 
+
+    $$\frac{1}{2}t^2 + c,$$
+
+    where $c$ is an integration constant. In order to specify the integration 
+    constant, an initial condition is needed. For instance, if we know that when 
+    $t=2$ then $x(2)=4$, we can plug this into the equation to get 
+
+    $$\frac{1}{2}\cdot 4 + c = 4, $$
+
+    which implies that $c=2$. 
+    
+Essentially, initial conditions are needed when solving differential equations so
+that the unknowns resulting from integration may be determined.
+
+!!! info "Terminology for Differential Equations"
+
+    1. If a differential equation does not explicitly contain the 
+        independent variable $t$, it is called an *autonomous equation*.
+    2. If the largest derivative in a differential equation is of the first order, 
+        i.e. $n=1$, then the equation is called a first order differential 
+        equation.
+    3. Often you will see differential equations presented using $y(x)$ 
+        instead of $x(t)$. This is just a different nomenclature. 
+            
+In this course, we will be focusing on *Linear Differential Equations*, meaning 
+that we consider differential equations $x^{(n)}(t) = f(x^{(n-1)}(t), \cdots, x(t), t)$
+where the function $f$ is a linear polynomial function of the unknown function
+$x(t)$. A simple way to spot a non-linear differential equation is to look for 
+non-linear terms, such as $x(t) \cdot \dot{x}(t)$ or $x^{(n)}(t) \cdot x^{(2)}(t)$. 
+
+Often, we will be dealing with several coupled differential equations. In this 
+situation, we can write the entire system of differential equations as a vector 
+equation, involving a linear operator. For a system of $m$ equations, denote 
+
+$$\vec{x}(t) = \begin{bmatrix}
+x_1(t) \\
+\vdots \\
+x_{m}(t) \\
+\end{bmatrix}.$$
+
+A system of first order linear equations is then written as 
+
+$$\dot{\vec{x}}(t) = \vec{f}(\vec{x}(t),t) $$
+
+with the initial condition $\vec{x}(t_0) = \vec{x}_0$.
+
+###7.1.2. Basic examples and strategies for a (single) first-order differential equation
+
+Before focusing on systems of first order equations, we will first consider 
+examplary cases of single first-order equations with only one unknown function $x(t)$.
+In this case, we can distinguish important cases.
+
+#### Type 1: $\dot{x}(t) = f(t)$
+
+The simplest type of differential equation is the type usually learned about in the 
+integration portion of a calculus course. Such equations have the form,
+
+$$\dot{x}(t) = f(t). $$
+
+When $F(t)$ is an anti-derivative of $f(t)$ i.e. $\dot{F}=f$, then the solutions
+to this type of equation are 
+
+$$x(t) = F(t) + c. $$
+
+
+!!! info "What is the antiderivative?"
+    
+    You may know the antiderivative $F(t)$ of a function $f(t)$ under a different name -
+    it is the same as the indefinite integral: $F(t) = \int f(t) dt$. Remember that taking
+    an integral is essentially the opposite of differentiation, and indeed taking an integral
+    means finding a function $F(t)$ such that $\dot{F}(t) = \frac{dF}{dt} = \frac{d}{dt}
+    \int f(t) dt = f(t)$. In the context of differential equations we prefer to call this the
+    antiderivative as solving the differential equation means essentially undoing the derivative.
+
+    Note that the antiderivative is only defined up to a constant (as is the indefinite integral).
+    In practice, you will thus find some particular expression for $F(t)$ through integration. To
+    capture all possible solutions, don't forget the integration constant $c$ in the expression
+    above!
+
+!!! check "Example"
+
+    Given the equation
+    
+    $$\dot{x}(t)=t, $$
+    
+    one finds by integrating that the solution is $\frac{1}{2}t^2 + c$. 
+    
+
+#### Type 2: $\dot{x}(t) = f(x(t))$
+
+The previous example was easy, as the function $x(t)$ did not enter in the right-hand side.
+A second important case that we can solve explicitly is when the right-hand side is some
+function of $x(t)$:
+    
+$$\dot{x}(t)=f(x(t)).$$ 
+    
+This implies that $\frac{\dot{x}(t)}{f(x)} = 1$. Let $F(x)$ be the 
+anti-derivative of $\frac{1}{f(x)}$. Then, by making use of the chain rule: 
+    
+$$\frac{d}{dt} F(x(t)) = \frac{dx}{dt}\,\frac{dF}{dx} = \frac{\dot{x}(t)}{f(x(t))} = 1$$
+    
+$$\Leftrightarrow F(x(t)) = t + c.$$
+    
+From this, we notice that if we can solve for $x(t)$, then we have the 
+solution! Having a specific form for the function $f(x)$ can often make it 
+possible to solve either implicitly or explicitly for the function $x(t)$.
+
+!!! check "Example"
+
+    Given the equation
+    
+    $$\dot{x} = \lambda x, $$
+    
+    re-write the equation to be in the form 
+    
+    $$\frac{\dot{x}}{\lambda x} = 1.$$
+    
+    Now, applying the same process which was shown through just above, let $f(x)=\lambda x$ 
+    and $F(x)$ be the anti-derivative of the $\frac{1}{f(x)}$. Integrating 
+    allows us to find the form of this anti-derivative. 
+    
+    $$F(x):= \int \frac{dx}{\lambda x} = \frac{1}{\lambda}\log{\lambda x} $$
+    
+    Now, making use of the general solution we also have that $F(x(t)) =t+c$. 
+    These two equations can be combined to form an equation for $x(t)$,
+    
+    $$\log(\lambda x)  = \lambda t + c$$
+    $$x(t) = \frac{1}{\lambda} e^c e^{\lambda t} $$
+    $$x(t) = c_0 e^{\lambda t}$$
+    
+    where in the last line we defined a new constant $c_0 =\frac{1}{\lambda}e^c$.
+    Given an initial condition, we could immediately determine this constant $c_0$.
+    
+
+#### Type 3: $\dot{x}(t) = g(t) f(x(t))$
+
+So far we have considered onle DE's where the right-hand side is either a function of $t$
+*or* of $x(t)$. We can still solve a more generic case, if we can separate the two dependencies
+as:
+
+$$\dot{x}(t)=g(t)f(x(t)).$$
+
+This type of differential equation is called a first order differential equation 
+with non-constant coefficients. If $f(x(t))$ is linear in $x$ then it is also 
+said to be a linear equation.  
+
+This equation can be re-written to isolate the coefficient function, g(t)
+
+$$\frac{\dot{x}(t)}{f(x(t))} = g(t). $$
+
+Now, define $F(x)$ to be the anti-derivative of $\frac{1}{f(x)}$, and $G(t)$ to
+be the anti-derivative of $g(t)$. Without showing again the use of chain rule on
+the left side of the equation, we have
+
+$$\frac{d}{dt} F(x(t)) = g(t) $$
+$$\Rightarrow F(x(t)) = G(t) + c $$
+
+Given this form of a general solution, the knowledge of specific functions $f, g$ would
+make it possible to solve for $x(t)$. 
+
+!!! check "Example"
+
+    Let us apply the above strategy to the following equation,
+    
+    $$\dot{x}= t x^2 .$$
+    
+    The strategy indicates that we should define $f(x)=x^2$ and $g(t)=t$. 
+    As before, we can re-arrange the equation into the form:
+    
+    $$\frac{\dot{x}}{x^2} = t. $$
+    
+    It is then necessary to find $F(x)$, the anti-derivative of $\frac{1}{f(x)}$,
+    or the left hand side of the above equation, as well as $G(t)$, the 
+    anti-derivative of $g(t)$, or the right hand side of the previous equation.
+    
+    By integrating, one finds
+    
+    $$F(x) = - \frac{1}{x} $$
+    $$G(t)=\frac{1}{2}t^2 + c. $$
+    
+    Accordingly then, the intermediate equation we have is
+    
+    $$- \frac{1}{x} = \frac{1}{2} t^2 + c. $$
+    
+    At this point, it is possible to solve for $x(t)$ by re-arrangement
+    
+    $$x(t)= \frac{-2}{t^2 + c_0}, $$
+    
+    where in the last line we have defined $c_0 = 2c$. Once again, specification
+    of an initial condition would enable determination of $c_0$ directly. To see 
+    this, suppose $x(0) = 2$. By inserting this into the equation for $x(t)$, we get
+    
+    $$2 = \frac{-2}{c_0} $$
+    $$ \Rightarrow c_0 = -1.$$
+    
+    When solved for $c_0$, with the choice of initial condition $x(0)=2$, the 
+    full equation for $x(t)$ becomes 
+    
+    $$x(t)=\frac{-2}{t^2 -1}. $$
+
+!!! check "Example: First order linear differential equation with general non-constant coefficient function"
+
+    Let us apply the above strategy of dealing with non-constant coefficient functions
+    to the more general equation
+
+    $$\dot{x}= g(t) \cdot x. $$
+
+    This equation suggests that we first define $f(x)=x$ and then find $F(x)$ and 
+    $G(t)$, the anti-derivatives of $\frac{1}{f(x)}$ and $g(t)$, respectively. By doing
+    so, we determine that 
+
+    $$F(x) = log(x) \, .$$
+
+    Follow the protocol subsequently, we arrive at the equation
+
+    $$log(x) = G(t) + c.$$
+
+    Exponentiating and defining $c_0:=e^c$ delivers the equation for $x(t)$,
+
+    $$x(t)= c_0 e^{G(t)} .$$
+    
+So far, we have only considered first order differential equations. If we consider
+extending the strategies which we have developed to higher order equations such as
+
+$$x^{(2)}(t)=f(x), $$
+
+with f(x) being a linear function, then our work will swiftly become more tedious. Later on,
+we will develop a general theory for linear equations which will enable us to 
+tackle such higher order equations. For now, we move on to considering systems 
+of coupled first order linear DE's. 
+
+##7.2. Theory of systems of differential equations
+
+<iframe width="100%" height=315 src="https://www.youtube-nocookie.com/embed/4VoSMc08nQA?rel=0" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
+
+
+An intuitive presentation of a system of coupled first order differential 
+equations can be given by a phase portrait. Before demonstrating such a portrait,
+let us introduce a useful notation for working with systems of DE's. Several
+coupled DE's can be written down concisely as a single vector equation:
+
+$$\dot{\vec{x}}=\vec{f}(\vec{x}). $$
+
+In such an equation, the vector $\dot{\vec{x}}$ is the rate of change of a vector 
+quantity, for example; the velocity which is the rate of change of the position 
+vector. The term $\vec{f}(\vec{x})$ describes a vector field, which has one vector 
+per point $\vec{x}$. This type of equation can also be extended to include a time 
+varying vector field, $\vec{f}(\vec{x},t)$. 
+
+In the phase portrait below, the velocities of the cars are determined by 
+the vector field $\vec{f}(\vec{x})$, where their velocity corresponds to the slope of 
+each arrow. The position of each of the little cars is determined by an initial 
+condition. Since the field lines do not cross and the cars begin on different 
+field lines, they will remain on different field lines. 
+
+![image](figures/Phase_portrait_with_cars.png)
+
+!!!info "Properties of a system of 1st order linear DEs"
+    If $\vec{f}(\vec{x})$ is not *crazy*, for example - if it is continuous and 
+    differentiable, then it is possible to prove the following two properties for 
+    a system of first order linear DE's
+
+    1. **Existence of solution**: For any specified initial condition, there is a solution.
+    2. **Uniqueness of solution**: Any point $\vec{x}(t)$ is uniquely determined by the
+        initial condition and the equation i.e. we know where each point "came from"
+        $\vec{x}(t'<t)$. 
+
+###7.2.1. Systems of linear first order differential equations
+
+####7.2.1.1. Homogeneous systems
+
+Any homogeneous system of first order linear DE's can be written in the form 
+
+$$\dot{\vec{x}} = A(t) \vec{x} \, ,$$
+
+where $A$ is a linear operator. The system is called homogeneous because it 
+does not contain any additional term which is not dependent on $\vec{x}$ (for 
+example an additive constant or an additional function depending only on t). 
+
+!!! info "Linearity of a system of DEs"
+    An important property of such a system is *linearity*, which has the following 
+    implications
+
+    1. If $\vec{x}(t)$ is a solution ,then $c \vec{x}(t)$ is a solution too, for any constant c
+    2. If $\vec{x}(t)$ and $\vec{y}(t)$ are both solutions, then so is $a \vec{x}(t)+ b \vec{y}(t)$,
+    where $a$ and $b$ are both constants. 
+
+These properties have special importance for modelling physical systems, due to
+the principle of superposition which is especially important in quantum physics,
+as well as electromagnetism and fluid dynamics. For example, in electromagnetism, 
+when there are four charges arranged in a square acting on a test charge 
+located within the square, it is sufficient to sum the individual forces in 
+order to find the total force. Physically, this is the principle of superposition, 
+and mathematically, superposition is linearity and applies to linear models.
+
+!!! info "General Solution"
+
+    For a system of $n$ linear first order DE's with $n \times n$ linear operator 
+    $A(t)$, the general solution can be written as 
+
+    $$\vec{x}(t) = c_1 \vec{\phi}_1 (t) + c_2 \vec{\phi}_2 (t) + \cdots + c_n \vec{\phi}_n (t),$$
+
+    where $\{\vec{\phi}_1 (t), \vec{\phi}_2(t), \cdots, \vec{\phi}_n (t) \}$ are $n$ independent solutions which form a basis for the solution space, and $c_1, c_2, \cdots c_n$ are constants. 
+
+    $\{\vec{\phi}_1 (t), \vec{\phi}_2(t), \cdots, \vec{\phi}_n (t) \}$ are a basis if and 
+    only if they are linearly independent for fixed $t$:
+
+    $$\det \big{(}\vec{\phi}_1 (t) | \vec{\phi}_2 (t) | \cdots | \vec{\phi}_n (t) \big{)} \neq 0.$$
+
+    If this condition holds for one $t$, it holds for all $t$.
+
+####7.2.2.2 Inhomogeneous systems
+
+Compared to the homogeneous equation, an inhomogeneous equation has an 
+additional term, which may be a function of the independent variable. 
+
+$$ \dot{\vec{x}}(t) = A(t) \vec{x}(t) + \vec{b}(t).$$
+
+!!! info "Relation between a solutions of a homogeneous and inhomogeneous equations" 
+    There is a simple connection between the general solution of an inhomogeneous 
+    equation and the corresponding homogeneous equation. If $\vec{\psi}_1$ and $\vec{\psi}_2$
+    are two solutions of the inhomogeneous equation, then their difference is a 
+    solution of the homogeneous equation 
+
+    $$(\dot{\vec{\psi}_1}-\dot{\vec{\psi}_2}) = A(t) (\vec{\psi}_1 - \vec{\psi}_2). $$
+
+    The general solution of the inhomogeneous equation can be written in terms of 
+    the basis of solutions for the homogeneous equation, plus one particular solution
+    to the inhomogeneous equation,
+
+    $$\vec{x}(t) = \vec{\psi}(t) + c_1 \vec{\phi}_1 (t) + c_2 \vec{\phi}_2 (t) + \cdots + c_n \vec{\phi}_n (t). $$
+
+    In the above equation, $\{\vec{\phi}_1 (t), \vec{\phi}_2(t), \cdots, \vec{\phi}_n (t) \}$
+    form a basis for the solution space of the homogeneous equation and $\vec{\psi}(t)$
+    is a particular solution of the inhomogeneous system. 
+
+!!! tip "Strategy of finding the solution of the inhomogeneous equation"
+    Now we need a strategy for finding the solution of the inhomogeneous equation. 
+    Begin by making an ansatz that $\vec{x}(t)$ can be written as a linear combination 
+    of the basis functions for the homogeneous system, with coefficients that are 
+    functions of the independent variable.
+    
+    1. Ansatz:
+        $$\vec{x}(t) = c_1(t) \vec{\phi}_1 (t)+ c_2(t) \vec{\phi}_2(t) + \cdots + c_n(t) \vec{\phi}_n (t) $$
+
+    2. Define the vector $\vec{c}(t)$ and matrix $\vec{\Phi}(t)$ as
+
+        $$\vec{c}(t) = \begin{bmatrix}
+        c_1(t) \\
+        \vdots \\
+        c_n(t) \\
+        \end{bmatrix} $$
+        $$\vec{\Phi}(t) = \big{(} \vec{\phi}_1 (t) | \cdots | \vec{\phi}_n (t) \big{)} $$
+
+    3. With these definitions, it is possible to re-write the ansatz for $\vec{x}(t)$,
+
+        $$ \vec{x}(t) = \vec{\Phi}(t) \vec{c}(t).$$
+
+    4. Using the Leibniz rule, we then have the following expanded equation,
+
+        $$\dot{\vec{x}}(t) = \dot{\vec{\Phi}}(t) \vec{c}(t) + \vec{\Phi}(t) \dot{\vec{c}}(t).$$
+
+    5. Substituting the new expression into the differential equation gives,
+
+        $$\dot{\vec{\Phi}}(t) \vec{c}(t) + \vec{\Phi}(t) \dot{\vec{c}}(t) = A(t) \vec{\Phi}(t) \vec{c}(t) + \vec{b}(t) $$
+        $$\vec{\Phi}(t) \dot{\vec{c}}(t) = \vec{b}(t). $$
+
+        In order to cancel terms in the previous line, we made use of the fact that $\vec{\Phi}(t)$ solves the homogeneous equation $\dot{\vec{\Phi}} = A \vec{\Phi}$.
+        
+    6. By way of inverting and integrating, we can write the equation for the coefficient vector $\vec{c}(t)$
+
+        $$\vec{c}(t) = \int \vec{\Phi}^{-1}(t) \vec{b}(t) dt.$$
+
+    7. With access to a concrete form of the coefficient vector, we can then write down the particular solution,
+
+        $$\vec{\psi}(t)= \vec{\Phi}(t) \cdot \int \vec{\Phi}^{-1}(t) \vec{b}(t) dt .$$
+
+!!! check "Example: Inhomogeneous first order linear differential equation"
+
+    The technique for solving a system of inhomogeneous equations also works for a 
+    single inhomogeneous equation. Let us apply the technique to the equation
+
+    $$ \dot{x} = \lambda x + a. $$
+
+    In this particular inhomogenous equation, the function $g(t)=a$. As discussed in
+    an earlier example, the solution to the homogenous equation is
+    $c e^{\lambda t}$. Hence, we define $\phi(t)=e^{\lambda t}$ and make the ansatz
+
+    $$\psi(t) = c(t) e^{\lambda t}. $$
+
+    Solving for $c(t)$ results in 
+
+    $$c(t) = \int e^{- \lambda t} a  dt$$
+    $$c(t) = - \frac{ a }{\lambda} e^{- \lambda t} $$
+
+    Overall then, the solution (which can be easily verified by substitution) is 
+
+    $$\psi(t) = - \frac{a}{\lambda}.  $$ 
+    
+##7.3. Solving homogeneous linear system with constant coefficients
+
+<iframe width="100%" height=315 src="https://www.youtube-nocookie.com/embed/GGIDjgUpsH8?rel=0" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
+
+The type of equation under consideration in this section looks like 
+
+$$ \dot{\vec{x}}(t) = A \vec{x}(t),$$
+
+where, throughout this section, $A$ will be a constant matrix. It is possible 
+to define a formal solution using the *matrix exponential*, 
+$\vec{x}(t) = e^{A t}$.
+
+!!! info "Definition: Matrix Exponential"
+
+    Before defining the matrix exponential, recall the definition of the regular 
+    exponential function in terms of Taylor series,
+    
+    $$e^{x} = \overset{\infty}{\underset{n=0}{\Sigma}} \frac{x^n}{n!},$$
+    
+    in which it is agreed that $0!=1$. The matrix exponential is defined in 
+    exactly the same way, only now instead of taking powers of a number or 
+    function, powers of a matrix are calculated with
+    
+    $$e^{A} = \overset{\infty}{\underset{n=0}{\Sigma}} \frac{{A}^n}{n!}.$$
+     
+    It is important to use caution when translating the properties of the normal exponential function over to the matrix exponential, because not all of the regular properties hold generally. In particular,      
+    $$e^{X + Y} \neq e^{X} e^{Y},$$
+    
+    unless it happens that 
+     
+    $$[X, Y] = 0.$$
+     
+    The necessary condition for this property to hold, stated on the previous line, is called *commutativity*. Recall that in general, matrices are not commutative so such a condition is only met for particular choices of matrices. The property of *non-commutativity* (what happens when the condition is not met) is of central importance in the mathematical structure of quantum mechanics. *For example, mathematically, non-commutativity is responsible for the Heisenberg uncertainty relations.*
+     
+    On the other hand, one property that does hold, is that $e^{- A t}$ is the inverse of the matrix exponential of $A$. 
+    
+    Furthermore, it is possible to derive the derivative of the matrix exponential by making use of the Taylor series formulation,
+    $$\begin{align}
+    \frac{d}{dt} e^{A t} &= \frac{d}{dt} \overset{\infty}{\underset{n=0}{\Sigma}} \frac{(A t)^n}{n!} \\
+    ... &= \overset{\infty}{\underset{n=0}{\Sigma}} \frac{1}{n!} \frac{d}{dt} (A t)^n \\
+    ... &= \overset{\infty}{\underset{n=0}{\Sigma}} \frac{n A}{n!}(A t)^{n-1} \\
+    ... &= \overset{\infty}{\underset{n=1}{\Sigma}} \frac{A}{(n-1)!}(A t)^{n-1} \\
+    ... &= \overset{\infty}{\underset{n=0}{\Sigma}} \frac{A}{n!}(A t)^n \\
+    \frac{d}{dt} e^{A t} &= A e^{A t}.
+    \end{align}$$
+
+Armed with the matrix exponential and it's derivative, 
+$\frac{d}{dt} e^{A t} = A e^{A t}$, it is simple to verify that 
+the matrix exponential solves the differential equation. 
+
+!!! info "Properties of the solution using the matrix exponential:"
+    1. The columns of $e^{A t}$ form a basis for the solution space.
+    2. Accounting for initial conditions, the full solution of the equation is $\dot{\vec{x}}(t) = e^{A t} {\vec{x}}_{0}$, with initial condition $\vec{x}(0) = e^{A 0}{\vec{x}}_0 = \mathbb{I} {\vec{x}}_{0} = {\vec{x}}_{0}$. (here $\mathbb{I}$ is the $n\times n$ identity matrix)
+
+Next, we will discuss how to determine a solution in practice, beyond the 
+formal solution just presented. 
+
+### Case 1: $A$ is diagonalizable
+
+For an $n \times n$ matrix $A$, denote the $n$ distinct eigenvectors as $\{\vec{v}_1, \cdots, \vec{v}_n \}$. By definition, the eigenvectors satisfy the equation
+
+$$A \vec{v}_i = \lambda_i \vec{v}_i, \qquad \forall i \epsilon \{1, \cdots, n \}. $$
+
+Here, we give consideration to the case of distinct eigenvectors, in which case 
+the $n$ eigenvectors form a basis for $\mathbb{R}^{n}$. 
+
+!!! info "Strategy for finding solution when $A$ is diagonizable"
+
+    1.  To solve the equation $\dot{\vec{x}}(t) = A \vec{x}(t)$, define a set of scalar functions $\{u_{1}(t), \cdots u_{n}(t) \}$ and make the following ansatz:
+        $$\vec{\phi}_{i}(t) = u_{i}(t) \vec{v}_{i}.$$
+    2.  Then, by differentiating,
+        $$\dot{\vec{\phi}_i}(t) = \dot{u_i}(t) \vec{v}_{i}.$$
+
+    3.  The above equation can be combined with the differential equation for 
+        $\vec{\phi}_{i}(t)$, 
+        $$\dot{\vec{\phi}_{i}}(t)=A \vec{\phi}_{i}(t) \, ,$$
+        to derive the following equations,
+
+        $$\dot{u_i}(t) \vec{v}_{i} = A u_{i}(t) \vec{v}_{i}$$
+        $$\dot{u_i}(t) \vec{v}_{i} = u_{i}(t) \lambda_{i} \vec{v}_{i} $$
+        $$\vec{v}_{i} (\dot{u_i}(t) - \lambda_i u_{i}(t)) = 0, $$
+
+        where in the second last line, we make use of the fact that $\vec{v}_i$ is an eigenvector of $A$. 
+    4.  The obtained relation implies that 
+
+        $$\dot{u_i}(t) = \lambda_i u_{i}(t).$$
+
+        This is a simple differential equation, of the type dealt with in the third example. 
+    5.  The solution is found to be
+
+        $$u_{i}(t) = c_i e^{\lambda_i t},$$
+
+        with $c_i$ being a constant. 
+    6.  The general solution is found by adding all $n$ of the
+        solutions $\vec{\phi}_{i}(t)$,
+
+        $$\vec{x}(t) = c_{1} e^{\lambda_1 t} \vec{v}_{1} + c_{2} e^{\lambda_2 t} \vec{v}_{2} + \cdots + c_{n} e^{\lambda_n t} \vec{v}_{n}.$$
+
+        and the vectors $\{e^{\lambda_1 t} \vec{v}_{1}, \cdots, e^{\lambda_n t} \vec{v}_{n} \}$
+        form a basis for the solution space since $\det(\vec{v}_1 | \cdots | \vec{v}_n) \neq 0$
+        (the $n$ eigenvectors are linearly independent). 
+
+!!! check "Example: Homogeneous first order linear system with diagonalizable constant coefficient matrix"
+
+    Define the matrix
+    $$A = \begin{bmatrix}
+    0 & -1 \\
+    1 & 0 
+    \end{bmatrix},$$
+    and consider the DE 
+
+    $$\dot{\vec{x}}(t) = A \vec{x}(t), \quad \vec{x}_0 = \begin{bmatrix}
+    1 \\
+    0 
+    \end{bmatrix}. $$
+ 
+    To proceed by following the solution technique, we determine the eigenvalues of 
+    $A$, 
+ 
+    $$\det {\begin{bmatrix} 
+    -\lambda & -1 \\
+    1 & - \lambda \\
+    \end{bmatrix}} = \lambda^2 + 1 = 0. $$
+    
+    By solving the characteristic polynomial, one finds the two eigenvalues 
+    $\lambda_{\pm} = \pm i$. 
+    
+    Focusing first on the positive eigenvalue, we can determine the first 
+    eigenvector,
+    
+    $$\begin{bmatrix} 
+    0 & -1 \\
+    1 & 0 \\
+    \end{bmatrix} \begin{bmatrix}
+    a \\
+    b\\
+    \end{bmatrix} = i \begin{bmatrix}
+    a \\
+    b \\
+    \end{bmatrix}.$$
+
+    A solution to this eigenvector equation is given by $a=1$, $b=-i$, altogether
+    implying that
+    $$\lambda_1=i, \vec{v}_{1} = \begin{bmatrix} 
+    1 \\
+    -i \\
+    \end{bmatrix}.$$
+    
+    As for the second eigenvalue, $\lambda_{2} = -i$, we can solve the analogous
+    eigenvector equation to determine
+    $$\vec{v}_{2} = \begin{bmatrix}
+    1 \\
+    i \\
+    \end{bmatrix}.$$
+    
+    Hence, two independent solutions of the differential equation are:
+    
+    $$\vec{\phi}_{1} = e^{i t}\begin{bmatrix}
+    1 \\
+    -i \\
+    \end{bmatrix}, \vec{\phi}_{2}  = e^{-i t} \begin{bmatrix}
+    1 \\
+    i \\
+    \end{bmatrix}.$$
+ 
+    Before we can obtain the general solution of the equation, we must find coefficients for the linear combination of the two solutions which would satisfy the initial condition. To this end, we must solve:
+    
+    $$c_1 \vec{\phi}_{1}(t) + c_2 \vec{\phi}_{2}(t) = 
+    \begin{bmatrix}
+    1 \\
+    0 \\
+    \end{bmatrix}$$
+    
+    $$\begin{bmatrix}
+    c_1 + c_2 \\
+    -i c_1 + i c_2 \\
+    \end{bmatrix} = \begin{bmatrix} 
+    1 \\
+    0 \\
+    \end{bmatrix}.$$
+    
+    The second row of the vector equation for $c_1, c_2$ implies that $c_1=c_2$. 
+    The first row then implies that $c_1=c_2=\frac{1}{2}$. 
+    
+    Overall then, the general solution of the DE can be summarized
+    
+    $$\dot{\vec{x}}(t) = \begin{bmatrix}
+    \frac{1}{2}(e^{i t} + e^{-i t}) \\
+    \frac{1}{2 i}(e^{i t} - e^{-i t}) \\
+    \end{bmatrix} = \begin{bmatrix}
+    \cos(t) \\
+    \sin(t) \\
+    \end{bmatrix}. $$
+
+### Case 2: $A (2 $ by $ 2)$ is defective
+
+In this case, we consider the situation where $\det(A- \lambda I)$ 
+has a root $\lambda$ with multiplicity 2, but only one eigenvector $\vec{v}_1$. 
+
+!!! check "Example: Matrix with eigenvalue of multiplicity 2 and only a single eigenvector. (Part 1)"
+    
+    Consider the matrix
+    
+    $$A = \begin{bmatrix}
+    1 & 1 \\
+    0 & 1 \\
+    \end{bmatrix}$$
+    
+    The characteristic polynomial can be found by evaluating
+    
+    $$\det \big{(} \begin{bmatrix}
+    1-\lambda & 1 \\
+    0 & 1-\lambda \\
+    \end{bmatrix} \big{)} = 0$$
+    $$(1-\lambda)^2 = 0$$
+    
+    Hence, the matrix $A$ has the single eigenvalue $\lambda=1$ with multiplicity 2. As for finding an eigenvector, we solve
+    
+    $$\begin{bmatrix} 
+    1 & 1 \\
+    0 & 1 \\
+    \end{bmatrix} \begin{bmatrix} 
+    a \\
+    b \\
+    \end{bmatrix} = \begin{bmatrix} 
+    a \\
+    b \\
+    \end{bmatrix}$$
+    $$\begin{bmatrix} 
+    a+b \\
+    b \\
+    \end{bmatrix} = \begin{bmatrix} 
+    a \\
+    b \\
+    \end{bmatrix}.$$
+    
+    These equations, $a+b=a$ and $b=b$ imply that $b=0$ and $a$ can be chosen arbitrarily, for example as $a=1$. Then, the only eigenvector is
+    
+    $$\vec{v}_1 = \begin{bmatrix} 
+    1 \\
+    0 \\
+    \end{bmatrix}.$$
+    
+What is the problem in this case? Since there are $n$ equations to be solved and an $n \times n$ linear operator $A$, the solution space for the equation requires a basis of $n$ solutions. In this case however, there are $n-1$ eigenvectors, so we cannot use only these eigenvectors in forming a basis for 
+the solution space. 
+
+!!! info "Strategy for finding a solution when $A (2 $ by $ 2)$ is defective"
+
+    1. Suppose that we have a system of $2$ coupled equations, so that $A$ is a $2 \times 2$ matrix, which has eigenvalue $\lambda_1$ with multiplicity $2$. As in the previous section, we can form one solution using the single eigenvector $\vec{v}_1$,
+
+        $$\vec{\phi}_1(t) = e^{\lambda_1 t} \vec{v}_1.$$
+
+    2. To determine the second linearly independent solution, make the following ansatz:
+
+        $$\vec{\phi}_2(t) = t e^{\lambda_1 t} \vec{v}_1 + e^{\lambda_1 t} \vec{v}_2.$$
+
+    3. With this ansatz, it is then necessary to determine an appropriate vector $\vec{v}_2$ such that $\vec{\phi}_2(t)$ is really a solution of this problem. To achieve that, take the derivative of $\vec{\phi}_2(t)$,
+
+        $$\dot{\vec{\phi}_2}(t) = e^{\lambda_1 t} \vec{v}_1 + \lambda_1 t e^{\lambda_1 t} \vec{v}_1 + \lambda_1 e^{\lambda_1 t} \vec{v}_2 $$
+
+    4. Also, write the matrix equation for $\vec{\phi}_2(t)$,
+
+        $$A \vec{\phi}_2(t) = A t e^{\lambda_1 t} \vec{v}_1 + A e^{\lambda_1 t} \vec{v}_2 $$
+        $$A \vec{\phi}_2(t) = \lambda_1 t e^{\lambda_1 t} \vec{v}_1 + A e^{\lambda_1 t}\vec{v}_2$$
+
+    5. Since $\vec{\phi}_2(t)$ must solve the equation $\dot{\vec{\phi}_2(t)} = A \vec{\phi}_2(t)$, we can combine and simplify the previous equations to write 
+
+        $$A \vec{v}_2 - \lambda_1  \vec{v}_2 = \vec{v}_1$$
+        $$(A- \lambda_1 I) \vec{v}_2 = \vec{v}_1 $$
+
+    6. With this condition, it is possible to write the general solution as
+
+        $$\vec{x}(t) = c_1  e^{\lambda_1 t} \vec{v}_1 + c_2(t e^{\lambda_1 t} \vec{v}_1 + e^{\lambda_1 t} \vec{v}_2).$$
+
+!!! check "Example: Continuation of the example with $A$ defective (Part 2)"
+    
+    Now, our task is to apply the condition derived just above in order to solve for $\vec{v}_2$,
+    
+    $$\begin{bmatrix}
+    1-1 & 1 \\
+    0 & 1-1 \\
+    \end{bmatrix} \begin{bmatrix}
+    a \\
+    b \\
+    \end{bmatrix} = \begin{bmatrix}
+    1 \\
+    0 \\
+    \end{bmatrix}$$
+    $$\begin{bmatrix} 
+    b \\
+    0 \\
+    \end{bmatrix} = \begin{bmatrix} 
+    1 \\
+    0 \\
+    \end{bmatrix}$$
+    
+    Hence, $b=1$ and $a$ is undetermined, so may be taken as $a=0$. Then, 
+    $$\vec{v}_{2} = \begin{bmatrix} 0 \\1 \end{bmatrix}.$$ 
+    
+    Overall then, the general solution is 
+    
+    $$\vec{x}(t) = c_1 e^t \begin{bmatrix} 
+    1 \\
+    0 \\
+    \end{bmatrix} + c_2 e^t \big{(} t \begin{bmatrix} 
+    1 \\
+    0 \\ 
+    \end{bmatrix}  + \begin{bmatrix} 
+    0 \\
+    1 \\
+    \end{bmatrix}\big{)}.$$
+
+### Bonus case 3: Higher multiplicity eigenvalues
+
+In this case, we consider the situation where the matrix $A$ has an 
+eigenvalue $\lambda$ with multiplicity $m>2$, and only one eigenvector $\vec{v}$ 
+corresponding to $\lambda$, $(A - \lambda I)\vec{v}=0$. Notice here 
+that $A$ must be at least an $m \times m$ matrix. 
+
+To solve such a situation, we will expand upon the result of the previous 
+section and define the vectors $\vec{v}_2$ through $\vec{v}_{m}$ by
+
+$$(A- \lambda I) \vec{v}_2 = \vec{v}_1$$
+$$\vdots$$
+$$(A- \lambda I) \vec{v}_m = \vec{v}_{m-1}.$$
+
+Then, the subset of the basis of solutions corresponding to eigenvalue $\lambda$
+is formed by the vectors
+
+$$\vec{\phi}_{k}(t) = e^{\lambda t} \big{(} \frac{t^{k-1}}{(k-1)!}\vec{v}_1 + \cdots + t \vec{v}_{k-1} + \vec{v}_{k} \big{)} \quad \forall k \epsilon \{1, \cdots, m \}.$$
+
+To prove this, first take the derivative of $\vec{\phi}_{k}(t)$,
+
+$$\dot{\vec{\phi}_{k}(t)} = \lambda \vec{\phi}_{k}(t) + e^{\lambda t} \big{(} \frac{t^{k-2}}{(k-2)!}\vec{v}_1 + \cdots + \vec{v}_{k-1} \big{)}.$$
+
+Then, for comparison, multiply $\vec{\phi}_k(t)$ by $A$
+
+$$\begin{align} 
+A \vec{\phi}_k (t) &= e^{\lambda t} \big{(} \frac{t^{k-1}}{(k-1)!}\lambda \vec{v}_1 + \frac{t^{k-2}}{(k-2)!} A \vec{v}_2 + \cdots + A \vec{v}_{k-1} + A \vec{v}_k \big{)}\\
+&= \lambda \vec{\phi}_k (t) + e^{\lambda t} \big{(} \frac{t^{k-2}}{(k-2)!}(A- \lambda I)\vec{v}_2 + \cdots + t (A- \lambda I)\vec{v}_{k-1} + (A- \lambda I)\vec{v}_{k}  \big{)}\\
+&=  \lambda \vec{\phi}_k (t) + e^{\lambda t} \big{(} \frac{t^{k-2}}{(k-2)!} \vec{v}_1 + \cdots + t \vec{v}_{k-2} + \vec{v}_{k-1} \big{)}\\
+&= \dot{\vec{\phi}}_{k}(t).
+\end{align}$$
+
+Notice that in the second last line we made use of the relations 
+$(A- \lambda I)\vec{v}_{i} = \vec{v}_{i-1}$. 
+
+This completes the proof since we have demonstrated that $\vec{\phi}_{k}(t)$ is a solution of the DE.
+
+*** 
+##7.4. Problems
+
+1. [:grinning:] Solve:
+
+    (a)  $\dot{x}(t) = t^4$
+
+    (b)  $\dot{x}(t) = \sin(t)$
+
+2. [:grinning:] Solve, subject to the initial condition $x(0)=\frac{1}{2}$:
+
+    (a) $\dot{x}(t) = x^2$
+
+    (b) $\dot{x}(t) = t x$
+
+    (c) $\dot{x}(t) = t x^{4}$
+
+3. [:smirk:] Solve, subject to the given initial condition:
+
+    (a) $\dot{x}(t)=-\tan(x)\sin(x)$, subject to $x(0)=1$. 
+
+    (b) $\dot{x(t)}=\frac{1}{3} x^2+3$, subject to $x(0)=3$.
+
+    Hint: it is fine if you use a computer algebra program to solve the integrals for these problems.
+
+4. [:smirk:] Solve the following equation and list all possible solutions:
+
+    $$\dot{x}=\cos^2(x)$$
+
+    Hint: $\int \frac{1}{\cos^2(x)} dx = \tan(x) $
+      
+5. [:grinning:] Identify which of the following systems of equations is linear.
+
+    *Note that you do not need to solve them!*  
+
+    (a) $$\dot{x_1}= t x_1 -t x_2$$
+        $$\dot{x}_2 = x_1 x_2 - x_2$$
+
+    (b) $$\dot{x}_1 = e^{-t}x_1$$
+        $$\dot{x}_2 = \sqrt{t + \cos(t)-1}x_1 + \frac{\sin(t)}{t^2+t-1}x_2$$
+
+    (c) $$x^{(2)}_1 x_1 + \dot{x}_1 = 8 x_2$$
+        $$\dot{x}_2=5tx_2 + x_1$$
+
+6. [:grinning:] Take the system of equations:
+
+    $$\dot{x}_1 = \frac{1}{2} (t-1)x_1 + \frac{1}{2} (t+1)x_2$$
+
+    $$\dot{x}_2 = \frac{1}{2}(t+1)x_1 + \frac{1}{2}(t-1)x_2.$$
+
+    Show that 
+
+    $$\vec{\Phi}_1(t) = \begin{bmatrix} 
+    e^{- t} \\
+    -e^{- t} \\
+    \end{bmatrix}$$
+    and
+    $$\vec{\Phi}_2(t)=\begin{bmatrix}
+    e^{\frac{1}{2}(t^2)} \\
+    e^{\frac{1}{2}(t^2)} \\
+    \end{bmatrix}$$
+
+    constitute a basis for the solution space of this system of equations. 
+    To this end, first verify that they are indeed solutions and then that 
+    they form a basis. 
+
+7. [:grinning:] Take the system of equations: 
+
+    $$\dot{x}_1=x_1$$
+
+    $$\dot{x}_2=x_1.$$
+
+    Re-write this system of equations into the general form
+
+    $$\dot{\vec{x}} = A \vec{x}$$
+
+    and then find the general solution. Specify the general solution for the 
+    following initial conditions
+
+    (a) $$\vec{x}(0) = \begin{bmatrix} 
+        1 \\
+        0 \\
+        \end{bmatrix}$$
+
+    (b) $$\vec{x}(0) = \begin{bmatrix}
+        0 \\
+        1 \\ 
+        \end{bmatrix}$$
+
+8. [:smirk:] Find the general solution of 
+
+    $$\begin{bmatrix}
+    \dot{x}_1 \\
+    \dot{x}_2 \\
+    \dot{x}_3 \\
+    \end{bmatrix} = \begin{bmatrix} 
+    1 & 1 & 0 \\
+    1 & 1 & 0 \\
+    0 & 0 & 3 \\
+    \end{bmatrix} \begin{bmatrix} 
+    x_1 \\
+    x_2 \\
+    x_3 \\
+    \end{bmatrix}.$$
+
+    Then, specify the solution for the initial conditions 
+
+    (a) $$\begin{bmatrix} 
+        0 \\
+        0 \\
+        1 \\
+        \end{bmatrix}$$
+
+    (b) $$\begin{bmatrix}
+        1 \\
+        0 \\
+        0 \\
+        \end{bmatrix}$$
+
+9. [:sweat:] Find the general solution of the system of equations:
+
+    $$\dot{x}_1 = 3 x_1 + x_2$$
+    $$\dot{x}_2 = - x_1 + x_2$$  
+
+ 
+
diff --git a/docs/8_differential_equations_2.md b/docs/8_differential_equations_2.md
new file mode 100644
index 0000000000000000000000000000000000000000..33cae3e72fb2b1bb86e08a1b3773b2cb8296b4aa
--- /dev/null
+++ b/docs/8_differential_equations_2.md
@@ -0,0 +1,632 @@
+---
+title: Differential Equations 2
+---
+
+#8. Differential equations: Part 2
+
+The second lecture on differential equations consists of three parts, each with their own video:
+
+- [8.1. Higher order linear differential equations](#81-higher-order-linear-differential-equations)
+- [8.2. Partial differential equations: Separation of variables](#82-partial-differential-equations-separation-of-variables)
+- [8.3. Self-adjoint differential operators](#83-self-adjoint-differential-operators)
+
+**Total video length: 1 hour 9 minutes**
+
+and at the end of the lecture notes, there is a set of corresponding exercises:
+
+- [8.4. Problems](#84-problems)
+
+***
+
+##8.1. Higher order linear differential equations
+
+<iframe width="100%" height=315 src="https://www.youtube-nocookie.com/embed/ucvIiLgJ2i0?rel=0" frameborder="0" allow="accelerometer; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
+
+###8.1.1 Definitions
+
+In the previous lecture, we focused on first order linear differential equations
+and systems of such equations. In this lecture, we switch focus to DE's 
+which involve higher derivatives of the function that we would like to solve for. To
+facilitate this shift, we are going to change notation. 
+
+!!! warning "Change of notation"
+    In the previous lecture, we wrote differential equations for $x(t)$. In this lecture we will write DE's 
+    of $y(x)$, where $y$ is the unknown function and $x$ is the independent variable. 
+    For this purpose, we make the following definitions,
+
+    $$y' = \frac{dy}{dx}, \ y'' = \frac{d^2 y}{dx^2}, \ \cdots, \ y^{(n)} = \frac{d^n y}{dx^n}.$$
+
+    In the new notation, a linear $n$-th order differential equation with constant
+    coefficients reads 
+
+    $$y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_1 y' + a_0 y = 0. $$
+
+!!! info "Linear combination of solutions are still solutions"
+
+    Note that, like it was the case for first order linear DE's, the property of 
+    linearity once again means that if $y_{1}(x)$ and $y_{2}(x)$ are both 
+    solutions, and $a$ and $b$ are constants, 
+    
+    $$a y_{1}(x) + b y_{2}(x)$$
+    
+    then a linear combination of the solutions is also a solution.
+
+###8.1.2 Mapping to a linear system of first-order DEs
+
+In order to solve a higher order linear DE, we will present a trick that makes it
+possible to map the problem of solving a single $n$-th order linear DE into a
+related problem of solving a system of $n$ first order linear DE's. 
+
+To begin, define:
+
+$$y_{1} = y, \ y_{2} = y', \ \cdots, \ y_{n} = y^{(n-1)}.$$
+
+Then, the differential equation can be re-written as
+
+$$\begin{split}
+y_1 ' & = y_2 \\
+y_2 ' & = y_3 \\
+& \vdots \\
+y_{n-1} '& = y_{n} \\
+y_{n} ' & = - a_{0} y_{1} - a_{1} y_{2} - \cdots - a_{n-1} y_{n}.
+\end{split}$$
+
+Notice that these $n$ equations together form a linear first order system, of which the 
+first $n-1$ equations are trivial. Note that this trick can be used to 
+reduce any system of $n$-th order linear DE's to a larger system of first order 
+linear DE's. 
+
+Since we already discussed the method of solution for first order linear 
+systems, we will outline the general solution to this system. As before, the 
+general solution will be the linear combination of $n$ linearly independent 
+solutions $f_{i}(x)$, $i \epsilon \{1, \cdots, n \}$, which make up a basis for 
+the solution space. Thus, the general solution has the form
+
+$$y(x) = c_1 f_1 (x) + c_2 f_2 (x) + \cdots + c_n f_{n}(x). $$
+
+!!! info "Wronskian"
+    To check that the $n$ solutions form a basis, it is sufficient to verify
+
+    $$ \det \begin{bmatrix} 
+    f_1(x) & \cdots & f_{n}(x) \\
+    f_1 ' (x) & \cdots & f_{n}'(x) \\
+    \vdots & \vdots & \vdots \\
+    f^{(n-1)}_{1} (x) & \cdots & f^{(n-1)}_{n} (x) \\
+    \end{bmatrix}  \neq 0.$$
+
+    The determinant in the preceding line is called the *Wronskian* or *Wronski determinant*.
+
+###8.1.3. General solution
+
+To determine particular solutions, we need to find the eigenvalues of 
+
+$$A = \begin{bmatrix} 
+0 & 1 & 0 & \cdots & 0 \\
+0 & 0 & 1 & \cdots & 0 \\
+\vdots & \vdots & \vdots & \cdots & \vdots \\
+0 & 0 & 0 & \cdots & 1 \\
+-a_0 & -a_1 & -a_2 & \cdots & -a_{n-1} \\
+\end{bmatrix}.$$
+
+It is possible to show that 
+
+$$\det(A - \lambda I) = -P(\lambda),$$
+
+in which $P(\lambda)$ is the characteristic polynomial of the system matrix $A$,
+
+$$P(\lambda) = \lambda^n + a_{n-1} \lambda^{n-1} + \cdots + a_0.$$
+
+
+??? info "Proof of $\det(A - \lambda I) = -P(\lambda)$"
+
+    As we demonstrate below, the proof relies on the co-factor expansion
+    technique for calculating a determinant. 
+
+    $$\begin{align} -\det(A - \lambda I) &=  \det \begin{bmatrix} 
+    \lambda & -1 & 0 & \cdots & 0 \\
+    0 & \lambda & -1 & \cdots & 0 \\
+    \vdots & \vdots & \vdots & \cdots & \vdots \\
+    a_0 & a_1 & a_2 & \cdots & a_{n-1} + \lambda \\
+    \end{bmatrix} \\
+    &= \lambda \det \begin{bmatrix}
+    \lambda & -1 & 0 & \cdots & 0 \\
+    0 & \lambda & -1 & \cdots & 0 \\
+    \vdots & \vdots & \vdots & \cdots & \vdots \\
+    a_1 & a_2 & a_3 & \cdots & a_{n-1} + \lambda \\
+    \end{bmatrix} + (-1)^{n+1}a_0 \det \begin{bmatrix} 
+    -1 & 0 & 0 & \cdots & 0 \\
+    \lambda & -1 & 0 & \cdots & 0 \\
+    \vdots & \vdots & \vdots & \cdots & \vdots \\
+    0 & 0 & \cdots & \lambda & -1 \\
+    \end{bmatrix} \\
+    &= \lambda \det \begin{bmatrix}
+    \lambda & -1 & 0 & \cdots & 0 \\
+    0 & \lambda & -1 & \cdots & 0 \\
+    \vdots & \vdots & \vdots & \cdots & \vdots \\
+    a_1 & a_2 & a_3 & \cdots & a_{n-1} + \lambda \\
+    \end{bmatrix} + (-1)^{n+1} a_0 (-1)^{n-1} \\
+    &= \lambda \det \begin{bmatrix}
+    \lambda & -1 & 0 & \cdots & 0 \\
+    0 & \lambda & -1 & \cdots & 0 \\
+    \vdots & \vdots & \vdots & \cdots & \vdots \\
+    a_1 & a_2 & a_3 & \cdots & a_{n-1} + \lambda \\
+    \end{bmatrix} + a_0 \\
+    &= \lambda (\lambda (\lambda \cdots + a_2) + a_1) + a_0 \\
+    &= P(\lambda).
+    \end{align}$$
+    
+    In the second last line of the proof, we indicated that the method of
+    co-factor expansion demonstrated above is repeated an additional $n-2$ times.
+    This completes the proof. 
+
+With the characteristic polynomial, it is possible to write the differential 
+equation as 
+
+$$P(\frac{d}{dx})y(x) = 0.$$
+
+To determine solutions, we need to find $\lambda_i$ such that $P(\lambda_i) = 0$. 
+By the fundamental theorem of algebra, we know that $P(\lambda)$ can be written 
+as
+
+$$P(\lambda) = \overset{l}{\underset{k=1}{\prod}} (\lambda - \lambda_k)^{m_k}.$$
+
+In the previous equation $\lambda_k$ are the k roots of the equations, and $m_k$
+is the multiplicity of each root. Note that the multiplicities satisfy 
+$\overset{l}{\underset{k=1}{\Sigma}} m_k = n$. 
+
+If the multiplicity of each eigenvalue is one, then solutions which form the 
+basis are then given as:
+
+$$f_{n}(x) = e^{\lambda_1 x}, \ e^{\lambda_2 x}, \ \cdots, \ e^{\lambda_n x}.$$
+
+If there are eigenvalues with multiplicity greater than one, the the solutions
+which form the basis are given as 
+
+$$f_{n}(x) = e^{\lambda_1 x}, \ x e^{\lambda_1 x} , \ \cdots, \ x^{m_{1}-1} e^{\lambda_1 x}, \ etc.$$
+
+??? info "Proof that basis solutions to $P(\frac{d}{dx})y(x) = 0$ are given by $f_{k}(x) = x^{m_{k}-1} e^{\lambda_k x}$"
+
+    In order to prove that basis solutions to the differential equation rewritten using the characteristic polynomial into the form 
+    $$P(\frac{d}{dx})y(x) = 0$$
+    are given by a general formula, taking into account the multiplicity of each eigenvalue:
+    $$f_{k}(x) = x^{m_{k}-1} e^{\lambda_k x}$$ 
+    let us first recollect some definitions:
+
+    1. A linear $n$-th order differential equation with constant coefficients reads 
+        $$y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_1 y' + a_0 y = 0. $$
+
+    2. The general solution will be a linear combination of $n$ linearly independent solutions $f_{i}(x)$, $i \epsilon \{1, \cdots, n \}$, which make up a basis for the solution space. Thus, the general solution has the form:
+        $$y(x) = c_1 f_1 (x) + c_2 f_2 (x) + \cdots + c_n f_{n}(x). $$
+            
+    3.  The key to finding the suitable basis is to rewrite the DEG in terms of its basis solutions using the properties of the characteristic polynomial and the differential operator as its variable:
+        $$P(\frac{d}{dx})f_{k}(x) = 0$$
+        and thus, in the general form using the fundamental theorem of algebra: 
+        $$ P(\frac{d}{dx}) f_{k}(x) = \Biggl( \overset{l}{\underset{k=1}{\prod}} \left(\frac{d}{dx} - \lambda_k \right)^{m_k} \Biggr) f_{k}(x) = 0 \, .$$
+
+    4. The solutions to this equation are given as:
+        $$f_{k}(x) = e^{\lambda_1 x}, \ e^{\lambda_2 x}, \ \cdots, \ e^{\lambda_n x} \qquad (1 \leq k \leq l \leq n) $$
+        and for each eigenvalue $\lambda_{k}$ with multiplicity greater than one, $m>1$, there is a subset of size $m$ with solutions corresponding to that eigenvalue;
+        $$f_{k,m_{k}}(x) = e^{\lambda_k x}, \ x e^{\lambda_k x} , \ \cdots, \ x^{m_{k}-1} e^{\lambda_k x}.$$
+        These solve the differential equation above in the general form: 
+        $$ P(\frac{d}{dx}) x^{m_{k}-1} e^{\lambda_k x} = \Biggl( \overset{l}{\underset{k=1}{\prod}} \left(\frac{d}{dx} - \lambda_k \right)^{m_k} \Biggr) x^{m_{k}-1} e^{\lambda_k x} = 0 \, .$$
+    
+    5.  The solutions given above can form the basis if their Wronskian is non-zero on an interval (it may vanish at isolated points);
+        $$ \det \begin{bmatrix} 
+        f_1(x) & \cdots & f_{n}(x) \\
+        f_1 ' (x) & \cdots & f_{n}'(x) \\
+        \vdots & \vdots & \vdots \\
+        f^{(n-1)}_{1} (x) & \cdots & f^{(n-1)}_{n} (x) \\
+        \end{bmatrix}  \neq 0 \, ,$$
+        and correspondingly, if any eigenvalue has a multiplicity higher than one: 
+        $$ \det \begin{bmatrix} 
+        f_1(x) & \cdots & f_{k}(x) &x f_{k}(x) & \cdots & x^{m_{k}-1} f_{k}(x)& \cdots & f_{l}(x) \\
+        f_1 ' (x) & \cdots & f_{k}(x)' &[x f_{k}(x)]' & \cdots & [x^{m_{k}-1} f_{k}(x)]' & \cdots & f_{l}'(x) \\
+        \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
+        f^{(n-1)}_{1} (x) & \cdots & f^{(n-1)}_{k}(x) &[x f_{k}(x)]^{(n-1)} & \cdots & [x^{m_{k}-1} f_{k}(x)]^{(n-1)}& \cdots & f^{(n-1)}_{l} (x) \\
+        \end{bmatrix}  \neq 0 \, .$$
+        Computation of the Wronskian can quickly become a tedious task in general. In this case, we can easily observe that the basis functions are linearly independent, because is not possible to obtain any of the solutions from a linear combination of the others!
+        
+        For example, $x e^{\lambda_{1}x}$ cannot be obtained from $x^2 e^{\lambda_{1}x}, \, e^{\lambda_{1}x}, \, x e^{\lambda_{2}x}, \cdots \, .$
+
+
+!!! check "Example: Second order homogeneous linear DE with constant coefficients"
+
+    Consider the equation 
+    
+    $$y'' + Ey = 0.$$ 
+    
+    The characteristic polynomial of this equation is 
+    
+    $$P(\lambda) = \lambda^2 + E.$$
+    
+    There are three cases for the possible solutions, depending upon the value 
+    of E.
+    
+    **Case 1: $E>0$**
+    For ease of notation, define $E=k^2$ for some constant $k$. The 
+    characteristic polynomial can then be factored as
+    
+    $$P(\lambda) = (\lambda+ i k)(\lambda - i k). $$
+    
+    Following our formulation for the solution, the two basis functions for the 
+    solution space are 
+    
+    $$f_1(x) = e^{i k x}, \ f_2=e^{- i k x}.$$
+    
+    Alternatively, the trigonometric functions can serve as basis functions, 
+    since they are linear combinations of $f_1$ and $f_2$ which remain linearly
+    independent,
+    
+    $$\tilde{f_1}(x)=\cos(kx), \tilde{f_2}(x)=\sin(kx).$$
+    
+    **Case 2: $E<0$**
+    This time, define $E=-k^2$, for constant $k$. The characteristic polynomial 
+    can then be factored as 
+    
+    $$P(\lambda) = (\lambda+ k)(\lambda -  k).$$
+
+    The two basis functions for this solution are then 
+    
+    $$f_1(x)=e^{k x}, \ f_2(x) = e^{-k x}.$$
+    
+    **Case 3: $E=0$**
+    In this case, there is a repeated eigenvalue (equal to $0$), since the 
+    characteristic polynomial reads
+    
+    $$P(\lambda) = (\lambda-0)^2.$$
+    
+    Hence, the basis functions for the solution space read 
+    
+    $$f_1(x)=e^{0 x} = 1, \ f_{2}(x) = x e^{0 x} = x. $$
+
+
+##8.2. Partial differential equations: Separation of variables
+
+<iframe width="100%" height=315 src="https://www.youtube-nocookie.com/embed/I4ghpYsFLFY?rel=0" frameborder="0" allow="accelerometer; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
+
+###8.2.1. Definitions and examples
+
+A partial differential equation (PDE) is an equation involving a function of two or 
+more independent variables and derivatives of said function. These equations
+are classified similarly to ordinary differential equations (the subject of
+our earlier study). For example, they are called linear if no terms such as
+
+$$\frac{\partial y(x,t)}{\partial x} \cdot \frac{d y(x,t)}{\partial t} \ or $$
+$$\frac{\partial^2 y(x,t)}{\partial x^2} y(x,t)$$ 
+
+occur. A PDE can be classified as $n$-th order according to the highest 
+derivative order of either variable occurring in the equation. For example, the 
+equation
+
+$$\frac{\partial^3 f(x,y)}{\partial x^3} + \frac{\partial f(x,t)}{\partial t} = 5$$
+
+is a $3^{rd}$ order equation because of the third derivative with respect to x
+in the equation.
+
+To begin with a context, we demonstrate that PDEs are of fundamental importance in physics, 
+especially in quantum physics. In particular, the Schrödinger equation, 
+which is of central importance in quantum physics, is a partial differential 
+equation with respect to time and space. This equation is essential 
+because it describes the evolution in time and space of the entire description
+of a quantum system $\psi(x,t)$, which is known as the wave function. 
+
+For a free particle in one dimension, the Schrödinger equation is 
+
+$$i \hbar \frac{\partial \psi(x,t)}{\partial t} = - \frac{\hbar^2}{2m} \frac{\partial^2 \psi(x,t)}{\partial x^2}. $$
+
+When we studied ODEs, an initial condition was necessary in order to fully 
+specify a solution. Similarly, in the study of PDEs an initial condition is 
+required but now also boundary conditions are required. Going back to the 
+intuitive discussion from the lecture on ODEs, each of these conditions is 
+necessary in order to specify an integration constant that occurs in solving 
+the equation. In partial differential equations at least one such constant will
+arise from the time derivative and likewise at least one from the spatial 
+derivative. 
+
+For the Schrödinger equation, we could supply the initial conditions
+$$\psi(x,0)=\psi_0(x)$$
+together with the boundary conditions
+$$\psi(0,t) = \psi(L, t) = 0$$
+
+This particular set of boundary conditions corresponds to a particle in a box,
+a situation which is used as the base model for many derivations in quantum 
+physics. 
+
+Another example of a partial differential equation common in physics is the 
+Laplace equation
+
+$$\frac{\partial^2 \phi(x,y)}{\partial x^2}+\frac{\partial^2 \phi(x,y)}{\partial y^2}=0.$$
+
+In quantum physics, Laplace's equation is important for the study of the hydrogen
+atom. In three dimensions and using spherical coordinates, the solutions to 
+Laplace's equation are special functions called spherical harmonics. In the 
+context of the hydrogen atom, these functions describe the wave function of the 
+system and a unique spherical harmonic function corresponds to each distinct set
+of quantum numbers.
+
+In the study of PDEs, there are no comprehensive overall treatment methods to the same 
+extent as there is for ODEs. There are several techniques which can be applied 
+to solving these equations and the choice of technique must be tailored to the
+equation at hand. Hence, we focus on some specific examples that are common in
+physics.
+
+###8.2.2. Separation of variables
+
+Let us focus on the one-dimensional Schrödinger equation of a free particle:
+
+$$i \hbar \frac{\partial \psi(x,t)}{\partial t} = - \frac{\hbar^2}{2m} \frac{\partial^2 \psi(x,t)}{\partial x^2}. $$
+
+To attempt a solution, we will make a *separation ansatz*,
+
+$$\psi(x,t)=\phi(x) f(t).$$
+
+!!! info "Separation ansatz"
+    The separation ansatz is a restrictive ansatz, not a fully general one. In
+    general, for such a treatment to be valid, an equation and the boundary 
+    conditions given with it have to fulfill certain properties. In this course
+    however, you will only be asked to use this technique when it is suitable.
+    
+!!! info "General procedure for the separation of variables:"
+
+    1. Substituting the separation ansatz into the PDE,
+
+        $$i \hbar \frac{\partial \phi(x)f(t)}{\partial t} = - \frac{\hbar^2}{2m} \frac{\partial^2 \phi(x)f(t)}{\partial x^2} $$
+        $$i \hbar \dot{f}(t) \phi(x) = - \frac{\hbar^2}{2m} \phi''(x)f(t). $$
+
+        Notice that in the above equation the derivatives on $f$ and $\phi$ can each be
+        written as ordinary derivatives, $\dot{f}=\frac{df(t)}{dt}$, 
+        $\phi''(x)=\frac{d^2 \phi}{dx^2}$. This is so because each one is a function of 
+        only one variable. 
+
+    2. Next, divide both sides of the equation by $\psi(x,t)=\phi(x) f(t)$,
+
+        $$i \hbar \frac{\dot{f}(t)}{f(t)} = - \frac{\hbar^2}{2m} \frac{\phi''(x)}{\phi(x)} = constant := \lambda. $$
+
+        In the previous line we concluded that each part of the equation must be equal 
+        to a constant, which we defined as $\lambda$. This follows because the left hand
+        side of the equation only has a dependence on the spatial coordinate $x$, whereas 
+        the right hand side only has dependence on the time coordinate $t$. If we have 
+        two functions $a(x)$ and $b(t)$ such that 
+        $a(x)=b(t) \quad \forall x, \quad t  \in \mathbb{R}$, then $a(x)=b(t)=const$.
+    3. The constant we defined, $\lambda$, is called a *separation constant*. With it, 
+        we can break the spatial and time dependent parts of the equation into two separate equations,
+
+        $$i \hbar \dot{f}(t) = \lambda f(t)$$
+
+        $$-\frac{\hbar^2}{2m} \phi''(x) = \lambda \phi(x) .$$
+
+    To summarize, this process has broken one partial differential equation into two
+    ordinary differential equations of different variables. In order to do this, we 
+    needed to introduce a separation constant, which remains to be determined.
+
+###8.2.3. Boundary and eigenvalue problems
+
+Continuing on with the Schrödinger equation example from the previous 
+section, let us focus on the spatial part
+
+$$-\frac{\hbar^2}{2m} \phi''(x) = \lambda \phi(x),$$
+$$\phi(0)=\phi(L)=0.$$
+
+This has the form of an eigenvalue equation, in which $\lambda$ is the 
+eigenvalue, $- \frac{\hbar^2}{2m} \frac{d^2}{dx^2}[\cdot]$ is the linear 
+operator and $\phi(x)$ is the eigenfunction. 
+
+Notice that this ordinary differential equation is specified 
+along with its boundary conditions. Note that in contrast to an initial value
+problem, a boundary value problem does not always have a solution. For example, 
+in the figure below, regardless of the initial slope, the curves never reach $0$
+when $x=L$. 
+
+![image](figures/DE2_1.png)
+
+For boundary value problems like this, there are only solutions for particular 
+eigenvalues $\lambda$. Coming back to the example, it turns out that solutions
+only exist for $\lambda>0$. 
+
+*This can be shown quickly, feel free to try it!*
+
+For simplicity, define $k^2:= \frac{2m \lambda}{\hbar^2}$. The equation then 
+reads
+
+$$\phi''(x)+k^2 \phi(x)=0.$$
+
+Two linearly independent solutions to this equation are 
+
+$$\phi_{1}(x)=\sin(k x), \ \phi_{2}(x) = \cos(k x).$$
+
+The solution to this homogeneous equation is then 
+
+$$\phi(x)=c_1 \phi_1(x)+c_2 \phi_2(x).$$
+
+The eigenvalue, $\lambda$, as well as one of the constant coefficients, can be 
+determined using the boundary conditions. 
+
+$$
+\begin{align}\phi(0) &=0 \ \Rightarrow \ \phi(x)=c_1 \sin(k x), \ c_2=0. \\
+\phi(L) &=0 \ \Rightarrow \ 0=c_1 \sin(k L) 
+\end{align} \, .
+$$
+
+In turn, using the properties of the $\sin(\cdot)$ function, it is now possible
+to find the allowed values of $k$ and hence also $\lambda$. The previous 
+equation implies, 
+
+$$k L = n \pi, \, n  \in  \mathbb{N}$$
+
+$$\lambda_n = \big{(}\frac{n \pi \hbar}{L} \big{)}^2.$$
+
+The values $\lambda_n$ are the eigenvalues. Now that we have determined 
+$\lambda$, it enters into the time equation, $i \hbar \dot{f}(t) = \lambda f(t)$
+only as a constant. We can therefore simply solve,
+
+$$\dot{f}(t) = -i \frac{\lambda}{\hbar} f(t)$$
+
+$$f(t) = A e^{\frac{-i \lambda t}{\hbar}}.$$
+
+In the previous equation, the coefficient $A$ can be determined if the original
+PDE is supplied with an initial condition. 
+
+Putting the solutions to the two ODEs together and redefining 
+$\tilde{A}=A \cdot c_1$, we arrive at the solutions for the PDE,
+
+$$\psi_n(x,t) = \tilde{A}_n e^{-i \frac{\lambda_n t}{\hbar}} \sin(\frac{n \pi x}{L}).$$
+
+Notice that there is one solution $\psi_{n}(x,t)$ for each natural number $n$. 
+These are also very special solutions that are important in the context of physics. We will next discuss how to 
+obtain the general solution in our example. 
+
+##8.3. Self-adjoint differential operators
+
+<iframe width="100%" height=315 src="https://www.youtube-nocookie.com/embed/p4MHW0yMMvY?rel=0" frameborder="0" allow="accelerometer; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
+
+###8.3.1. Connection to Hilbert spaces
+
+As hinted earlier, it is possible to re-write the previous equation by 
+defining a linear operator, $L$, acting on the space of functions which satisfy
+$\phi(0)=\phi(L)=0$:
+
+$$L[\cdot]:= \frac{- \hbar^2}{2m} \frac{d^2}{dx^2}[\cdot]. $$
+
+Then, the ODE can be written as 
+
+$$L[\phi]=\lambda \phi.$$
+
+This equation looks exactly like, and it turns out to be, an eigenvalue equation!
+
+!!! info "Connecting function spaces to Hilbert spaces"
+    
+    Recall that a space of functions can be transformed into a Hilbert space by 
+    equipping it with a inner product,
+    
+    $$\langle f, g \rangle = \int^{L}_{0} dx f^*(x) g(x) $$
+    
+    Use of this inner product also has utility in demonstrating that particular 
+    operators are *Hermitian*. The term "Hermitian" is precisely defined below.
+    Of considerable interest is that Hermitian operators have a set of convenient 
+    properties including all real eigenvalues and orthonormal eigenfunctions. 
+    
+The *nicest* type of operators for many practical purposes are Hermitian 
+operators. In quantum physics, for example, all physical operators must be 
+Hermitian. 
+
+!!! info "Hermiticity of an operator"
+    Denote a Hilbert space $\mathcal{H}$. An operator $H: \mathcal{H} \mapsto \mathcal{H}$ is said to be Hermitian if it satisfies
+    $$\langle f, H g \rangle = \langle H f, g \rangle \ \forall \ f, \ g \ \epsilon \ \mathcal{H}.$$
+
+Now, we would like to investigate whether the operator we have been working with,
+$L$, satisfies the criterion of being Hermitian over the function space 
+$\phi(0)=\phi(L)=0$ equipped with the inner product defined above (i.e. it is a
+Hilbert space).
+
+1.  First, denote this Hilbert space $\mathcal{H}_{0}$ and consider $f, \ g \ \in \ \mathcal{H}_0$ which are two functions from the Hilbert space. Then, we can investigate
+    $$\langle f, L g \rangle = \frac{- \hbar^2}{2m} \int^{L}_{0} dx f^*(x) \frac{d^2}{dx^2}g(x).$$
+
+2. In the next step, use the fact that it is possible to do integration by parts in the integral,
+    $$
+    \langle f, L g \rangle = \frac{+ \hbar^2}{2m} ( \int^{L}_{0} dx \frac{d f^*}{dx} \frac{d g}{dx} - [f^*(x)\frac{d g}{dx}] \big{|}^{L}_{0} )
+    $$
+    The boundary term vanishes due to the boundary conditions $f(0)=f(L)=0$, which directly imply $f^*(0)=f^*(L)=0$. 
+4. Now, integrate by parts a second time 
+    $$\langle f, L g \rangle = \frac{- \hbar^2}{2m} (\int^{L}_{0} dx \frac{d^2 f^*}{dx^2} g(x) - [\frac{d f^*}{dx} g(x)] \big{|}^{L}_{0} ).$$
+    As before, the boundary term vanishes, due to the boundary conditions $g(0)=g(L)=0$. 
+    After canceling the boundary term, the expression on the right hand side contained in the integral simplifies to $\langle L f, g \rangle$. 
+5. Therefore,
+    $$\langle f, L g \rangle=\langle L f, g \rangle. $$
+
+
+Thus, we demonstrated that $L$ is a Hermitian operator on the space $\mathcal{H}_0$. As a hermitian operator, $L$ has the property that its eigenfunctions form an orthonormal basis for the space $\mathcal{H}_0$. Hence, it is possible to expand any function $f \in \mathcal{H}_0$ in terms of the eigenfunctions of $L$.
+
+!!! info "Connection to quantum states"
+    
+    Recall that a quantum state $|\phi\rangle$ can be written in an orthonormal 
+    basis $\{ |u_n\rangle \}$ as 
+    $$|\phi\rangle = \underset{n}{\Sigma} \langle u_n | \phi \rangle\, |u_n\rangle.$$ 
+    
+    In the case of Hermitian operators, their eigenfunctions play the role of the orthonormal basis. In the context of our running example,
+    the 1D Schrödinger equation of a free particle, the eigenfunctions 
+    $\sin(\frac{n \pi x}{L})$ play the role of the basis functions $|u_n\rangle$.
+    
+To close our running example, consider the initial condition 
+$\psi(x,0) = \psi_{0}(x)$. Since the eigenfunctions $\sin(\frac{n \pi x}{L})$ 
+form a basis, we can now write the general solution to the problem as 
+
+$$\psi(x,t)  = \overset{\infty}{\underset{n}{\Sigma}} c_n e^{-i \frac{\lambda_n t}{\hbar}} \sin(\frac{n \pi x}{L}),$$
+
+where in the above we have defined the coefficients as a Fourier 
+coefficient,
+
+$$c_n:= \int^{L}_{0} dx \sin(\frac{n \pi x}{L}) \psi_{0}(x). $$
+    
+###8.3.2. General recipe for separable PDEs
+
+!!! tip "General recipe for separable PDEs" 
+
+    1. Make the separation ansatz to obtain separate ordinary differential 
+        equations.
+    2. Choose which equation to treat as the eigenvalue equation. This will depend 
+        upon the boundary conditions. Additionally, verify that the linear 
+        differential operator $L$ in the eigenvalue equation is Hermitian.
+    3. Solve the eigenvalue equation. Substitute the eigenvalues into the other 
+        equations and solve those too. 
+    4. Use the orthonormal basis functions to write down the solution corresponding 
+        to the specified initial and boundary conditions. 
+
+One natural question is: *"What if the operator $L$ from step 2 is not Hermitian?"*
+
+- It is possible to try and make it Hermitian by working on a Hilbert space equipped with a different inner product. This means that one can consider modifications to the definition of $\langle \cdot, \cdot \rangle$ such that $L$ is Hermitian with respect to the modified inner product. This type of technique falls under the umbrella of *Sturm-Liouville Theory*, which forms the foundation for a lot of the analysis that can be done analytically on PDEs.
+
+Another question is of course: *"What if the equation is not separable?"*
+
+- One possible approach is to try working in a different coordinate system. There are a few more analytic techniques available. However, in many situations, it becomes necessary to work with numerical methods of solution.
+
+*** 
+
+##8.4. Problems
+
+1.  [:grinning:] Which of the following equations for $y(x)$ is linear?
+
+    1. $y''' - y'' + x \cos(x) y' + y - 1 = 0$
+
+    2. $y''' + 4 x y' - \cos(x) y = 0$
+
+    3. $y'' + y y' = 0$
+
+    4. $y'' + e^x y' - x y = 0$
+
+2.  [:grinning:] Find the general solution to the equation 
+
+    $$y'' - 4 y' + 4 y = 0. $$
+
+    Show explicitly by computing the Wronski determinant that the 
+    basis for the solution space is actually linearly independent. 
+
+3.  [:grinning:] Find the general solution to the equation 
+
+    $$y''' - y'' + y' - y = 0.$$
+
+    Then find the solution to the initial conditions $y''(0) =0$, $y'(0)=1$, $y(0)=0$. 
+
+4.  [:smirk:] Take the Laplace equation in 2D:
+
+    $$\frac{\partial^2 \phi(x,y)}{\partial x^2} + \frac{\partial^2 \phi(x,y)}{\partial y^2} = 0.$$
+
+    1.  Make a separation ansatz $\phi(x,y) = f(x)g(y)$ and write 
+        down the resulting ordinary differential equations.
+
+    2.  Now assume that the boundary conditions $\phi(0,y) = \phi(L,y) =0$ for all y, i.e.  $f(0)=f(L)=0$. Find all solutions $f(x)$ and the corresponding eigenvalues.
+    3.  Finally, for each eigenvalue, find the general solution $g(y)$ for this eigenvalue. Combine this with all solutions $f(x)$ to write down the general solution (we know from the lecture that the operator $\frac{d^2}{dx^2}$ is Hermitian - you can thus directly assume that the solutions form an orthogonal basis). 
+
+
+5.  [:smirk:] Consider the following partial differential equations, and try to make a separation ansatz $h(x,y)=f(x)g(y)$. What do you observe in each case? (Only attempt the separation, do not solve the problem fully)
+    
+    1.  $\frac{\partial h(x,y)}{\partial x} + x \frac{\partial h(x,y)}{\partial y} = 0. $
+
+    2.  $\frac{\partial h(x,y)}{\partial x} + \frac{\partial h(x,y)}{\partial y} + xy\,h(x,y) = 0$
+
+6.  [:sweat:] We consider the Hilbert space of functions $f(x)$ defined for $x \ \epsilon \ [0,L]$ with $f(0)=f(L)=0$. 
+
+    Which of the following operators $\mathcal{L}$ on this space is Hermitian?
+
+    1.  $\mathcal{L}_1 f(x) = A(x) \frac{d^2 f}{dx^2}$
+
+    2.  $\mathcal{L}_2 f(x) = \frac{d}{dx} \big{(} A(x) \frac{df}{dx} \big{)}$
diff --git a/docs/code/.keep b/docs/code/.keep
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/docs/figures/.keep b/docs/figures/.keep
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/docs/figures/3_vector_spaces_1.jpg b/docs/figures/3_vector_spaces_1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..8011ec99918511ec0e7c26428ccfb72fdbe19928
Binary files /dev/null and b/docs/figures/3_vector_spaces_1.jpg differ
diff --git a/docs/figures/Coordinates_11_0.svg b/docs/figures/Coordinates_11_0.svg
new file mode 100644
index 0000000000000000000000000000000000000000..806d9562a13e561b74b6d8b4e8705189ab52306f
--- /dev/null
+++ b/docs/figures/Coordinates_11_0.svg
@@ -0,0 +1,810 @@
+<?xml version="1.0" encoding="utf-8" standalone="no"?>
+<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
+  "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
+<!-- Created with matplotlib (http://matplotlib.org/) -->
+<svg height="251pt" version="1.1" viewBox="0 0 375 251" width="375pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
+ <defs>
+  <style type="text/css">
+*{stroke-linecap:butt;stroke-linejoin:round;}
+  </style>
+ </defs>
+ <g id="figure_1">
+  <g id="patch_1">
+   <path d="
+M0 251.278
+L375.422 251.278
+L375.422 0
+L0 0
+z
+" style="fill:none;"/>
+  </g>
+  <g id="axes_1">
+   <g id="patch_2">
+    <path d="
+M33.4219 230.4
+L368.222 230.4
+L368.222 7.2
+L33.4219 7.2
+z
+" style="fill:none;"/>
+   </g>
+   <g id="line2d_1">
+    <path clip-path="url(#pe880596f72)" d="
+M33.4219 196.062
+L368.222 196.062" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:2.0;"/>
+   </g>
+   <g id="line2d_2">
+    <path clip-path="url(#pe880596f72)" d="
+M84.9296 230.4
+L84.9296 7.2" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:2.0;"/>
+   </g>
+   <g id="line2d_3">
+    <path clip-path="url(#pe880596f72)" d="
+M239.453 74.16
+L84.9296 196.062
+L265.206 67.2923" style="fill:none;stroke:#0000ff;stroke-linecap:square;stroke-width:2;"/>
+   </g>
+   <g id="line2d_4">
+    <path clip-path="url(#pe880596f72)" d="
+M239.453 74.16
+L265.206 67.2923" style="fill:none;stroke:#ff0000;stroke-linecap:square;stroke-width:2;"/>
+   </g>
+   <g id="line2d_5">
+    <path clip-path="url(#pe880596f72)" d="
+M239.453 74.16
+L257.995 59.5318" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:2;"/>
+   </g>
+   <g id="line2d_6">
+    <path clip-path="url(#pe880596f72)" d="
+M257.995 59.5318
+L265.206 67.2923" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:2;"/>
+   </g>
+   <g id="matplotlib.axis_1">
+    <g id="xtick_1">
+     <g id="line2d_7">
+      <path clip-path="url(#pe880596f72)" d="
+M33.4219 230.4
+L33.4219 7.2" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_8">
+      <defs>
+       <path d="
+M0 0
+L0 -4" id="m93b0483c22" style="stroke:#000000;stroke-width:0.5;"/>
+      </defs>
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="33.421875" xlink:href="#m93b0483c22" y="230.4"/>
+      </g>
+     </g>
+     <g id="line2d_9">
+      <defs>
+       <path d="
+M0 0
+L0 4" id="m741efc42ff" style="stroke:#000000;stroke-width:0.5;"/>
+      </defs>
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="33.421875" xlink:href="#m741efc42ff" y="7.2"/>
+      </g>
+     </g>
+     <g id="text_1">
+      <!-- −0.2 -->
+      <defs>
+       <path d="
+M31.7812 66.4062
+Q24.1719 66.4062 20.3281 58.9062
+Q16.5 51.4219 16.5 36.375
+Q16.5 21.3906 20.3281 13.8906
+Q24.1719 6.39062 31.7812 6.39062
+Q39.4531 6.39062 43.2812 13.8906
+Q47.125 21.3906 47.125 36.375
+Q47.125 51.4219 43.2812 58.9062
+Q39.4531 66.4062 31.7812 66.4062
+M31.7812 74.2188
+Q44.0469 74.2188 50.5156 64.5156
+Q56.9844 54.8281 56.9844 36.375
+Q56.9844 17.9688 50.5156 8.26562
+Q44.0469 -1.42188 31.7812 -1.42188
+Q19.5312 -1.42188 13.0625 8.26562
+Q6.59375 17.9688 6.59375 36.375
+Q6.59375 54.8281 13.0625 64.5156
+Q19.5312 74.2188 31.7812 74.2188" id="DejaVuSans-30"/>
+       <path d="
+M10.6875 12.4062
+L21 12.4062
+L21 0
+L10.6875 0
+z
+" id="DejaVuSans-2e"/>
+       <path d="
+M19.1875 8.29688
+L53.6094 8.29688
+L53.6094 0
+L7.32812 0
+L7.32812 8.29688
+Q12.9375 14.1094 22.625 23.8906
+Q32.3281 33.6875 34.8125 36.5312
+Q39.5469 41.8438 41.4219 45.5312
+Q43.3125 49.2188 43.3125 52.7812
+Q43.3125 58.5938 39.2344 62.25
+Q35.1562 65.9219 28.6094 65.9219
+Q23.9688 65.9219 18.8125 64.3125
+Q13.6719 62.7031 7.8125 59.4219
+L7.8125 69.3906
+Q13.7656 71.7812 18.9375 73
+Q24.125 74.2188 28.4219 74.2188
+Q39.75 74.2188 46.4844 68.5469
+Q53.2188 62.8906 53.2188 53.4219
+Q53.2188 48.9219 51.5312 44.8906
+Q49.8594 40.875 45.4062 35.4062
+Q44.1875 33.9844 37.6406 27.2188
+Q31.1094 20.4531 19.1875 8.29688" id="DejaVuSans-32"/>
+       <path d="
+M10.5938 35.5
+L73.1875 35.5
+L73.1875 27.2031
+L10.5938 27.2031
+z
+" id="DejaVuSans-2212"/>
+      </defs>
+      <g transform="translate(22.3109375 241.9984375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-2212"/>
+       <use x="83.7890625" xlink:href="#DejaVuSans-30"/>
+       <use x="147.412109375" xlink:href="#DejaVuSans-2e"/>
+       <use x="179.19921875" xlink:href="#DejaVuSans-32"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_2">
+     <g id="line2d_10">
+      <path clip-path="url(#pe880596f72)" d="
+M84.9296 230.4
+L84.9296 7.2" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_11">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="84.9295673077" xlink:href="#m93b0483c22" y="230.4"/>
+      </g>
+     </g>
+     <g id="line2d_12">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="84.9295673077" xlink:href="#m741efc42ff" y="7.2"/>
+      </g>
+     </g>
+     <g id="text_2">
+      <!-- 0.0 -->
+      <g transform="translate(77.6397235577 241.9984375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_3">
+     <g id="line2d_13">
+      <path clip-path="url(#pe880596f72)" d="
+M136.437 230.4
+L136.437 7.2" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_14">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="136.437259615" xlink:href="#m93b0483c22" y="230.4"/>
+      </g>
+     </g>
+     <g id="line2d_15">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="136.437259615" xlink:href="#m741efc42ff" y="7.2"/>
+      </g>
+     </g>
+     <g id="text_3">
+      <!-- 0.2 -->
+      <g transform="translate(129.316165865 241.9984375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-32"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_4">
+     <g id="line2d_16">
+      <path clip-path="url(#pe880596f72)" d="
+M187.945 230.4
+L187.945 7.2" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_17">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="187.944951923" xlink:href="#m93b0483c22" y="230.4"/>
+      </g>
+     </g>
+     <g id="line2d_18">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="187.944951923" xlink:href="#m741efc42ff" y="7.2"/>
+      </g>
+     </g>
+     <g id="text_4">
+      <!-- 0.4 -->
+      <defs>
+       <path d="
+M37.7969 64.3125
+L12.8906 25.3906
+L37.7969 25.3906
+z
+
+M35.2031 72.9062
+L47.6094 72.9062
+L47.6094 25.3906
+L58.0156 25.3906
+L58.0156 17.1875
+L47.6094 17.1875
+L47.6094 0
+L37.7969 0
+L37.7969 17.1875
+L4.89062 17.1875
+L4.89062 26.7031
+z
+" id="DejaVuSans-34"/>
+      </defs>
+      <g transform="translate(180.603545673 241.9984375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-34"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_5">
+     <g id="line2d_19">
+      <path clip-path="url(#pe880596f72)" d="
+M239.453 230.4
+L239.453 7.2" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_20">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="239.452644231" xlink:href="#m93b0483c22" y="230.4"/>
+      </g>
+     </g>
+     <g id="line2d_21">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="239.452644231" xlink:href="#m741efc42ff" y="7.2"/>
+      </g>
+     </g>
+     <g id="text_5">
+      <!-- 0.6 -->
+      <defs>
+       <path d="
+M33.0156 40.375
+Q26.375 40.375 22.4844 35.8281
+Q18.6094 31.2969 18.6094 23.3906
+Q18.6094 15.5312 22.4844 10.9531
+Q26.375 6.39062 33.0156 6.39062
+Q39.6562 6.39062 43.5312 10.9531
+Q47.4062 15.5312 47.4062 23.3906
+Q47.4062 31.2969 43.5312 35.8281
+Q39.6562 40.375 33.0156 40.375
+M52.5938 71.2969
+L52.5938 62.3125
+Q48.875 64.0625 45.0938 64.9844
+Q41.3125 65.9219 37.5938 65.9219
+Q27.8281 65.9219 22.6719 59.3281
+Q17.5312 52.7344 16.7969 39.4062
+Q19.6719 43.6562 24.0156 45.9219
+Q28.375 48.1875 33.5938 48.1875
+Q44.5781 48.1875 50.9531 41.5156
+Q57.3281 34.8594 57.3281 23.3906
+Q57.3281 12.1562 50.6875 5.35938
+Q44.0469 -1.42188 33.0156 -1.42188
+Q20.3594 -1.42188 13.6719 8.26562
+Q6.98438 17.9688 6.98438 36.375
+Q6.98438 53.6562 15.1875 63.9375
+Q23.3906 74.2188 37.2031 74.2188
+Q40.9219 74.2188 44.7031 73.4844
+Q48.4844 72.75 52.5938 71.2969" id="DejaVuSans-36"/>
+      </defs>
+      <g transform="translate(232.145612981 241.9984375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-36"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_6">
+     <g id="line2d_22">
+      <path clip-path="url(#pe880596f72)" d="
+M290.96 230.4
+L290.96 7.2" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_23">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="290.960336538" xlink:href="#m93b0483c22" y="230.4"/>
+      </g>
+     </g>
+     <g id="line2d_24">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="290.960336538" xlink:href="#m741efc42ff" y="7.2"/>
+      </g>
+     </g>
+     <g id="text_6">
+      <!-- 0.8 -->
+      <defs>
+       <path d="
+M31.7812 34.625
+Q24.75 34.625 20.7188 30.8594
+Q16.7031 27.0938 16.7031 20.5156
+Q16.7031 13.9219 20.7188 10.1562
+Q24.75 6.39062 31.7812 6.39062
+Q38.8125 6.39062 42.8594 10.1719
+Q46.9219 13.9688 46.9219 20.5156
+Q46.9219 27.0938 42.8906 30.8594
+Q38.875 34.625 31.7812 34.625
+M21.9219 38.8125
+Q15.5781 40.375 12.0312 44.7188
+Q8.5 49.0781 8.5 55.3281
+Q8.5 64.0625 14.7188 69.1406
+Q20.9531 74.2188 31.7812 74.2188
+Q42.6719 74.2188 48.875 69.1406
+Q55.0781 64.0625 55.0781 55.3281
+Q55.0781 49.0781 51.5312 44.7188
+Q48 40.375 41.7031 38.8125
+Q48.8281 37.1562 52.7969 32.3125
+Q56.7812 27.4844 56.7812 20.5156
+Q56.7812 9.90625 50.3125 4.23438
+Q43.8438 -1.42188 31.7812 -1.42188
+Q19.7344 -1.42188 13.25 4.23438
+Q6.78125 9.90625 6.78125 20.5156
+Q6.78125 27.4844 10.7812 32.3125
+Q14.7969 37.1562 21.9219 38.8125
+M18.3125 54.3906
+Q18.3125 48.7344 21.8438 45.5625
+Q25.3906 42.3906 31.7812 42.3906
+Q38.1406 42.3906 41.7188 45.5625
+Q45.3125 48.7344 45.3125 54.3906
+Q45.3125 60.0625 41.7188 63.2344
+Q38.1406 66.4062 31.7812 66.4062
+Q25.3906 66.4062 21.8438 63.2344
+Q18.3125 60.0625 18.3125 54.3906" id="DejaVuSans-38"/>
+      </defs>
+      <g transform="translate(283.680649038 241.9984375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-38"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_7">
+     <g id="line2d_25">
+      <path clip-path="url(#pe880596f72)" d="
+M342.468 230.4
+L342.468 7.2" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_26">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="342.468028846" xlink:href="#m93b0483c22" y="230.4"/>
+      </g>
+     </g>
+     <g id="line2d_27">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="342.468028846" xlink:href="#m741efc42ff" y="7.2"/>
+      </g>
+     </g>
+     <g id="text_7">
+      <!-- 1.0 -->
+      <defs>
+       <path d="
+M12.4062 8.29688
+L28.5156 8.29688
+L28.5156 63.9219
+L10.9844 60.4062
+L10.9844 69.3906
+L28.4219 72.9062
+L38.2812 72.9062
+L38.2812 8.29688
+L54.3906 8.29688
+L54.3906 0
+L12.4062 0
+z
+" id="DejaVuSans-31"/>
+      </defs>
+      <g transform="translate(335.397716346 241.9984375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-31"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+      </g>
+     </g>
+    </g>
+   </g>
+   <g id="matplotlib.axis_2">
+    <g id="ytick_1">
+     <g id="line2d_28">
+      <path clip-path="url(#pe880596f72)" d="
+M33.4219 230.4
+L368.222 230.4" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_29">
+      <defs>
+       <path d="
+M0 0
+L4 0" id="m728421d6d4" style="stroke:#000000;stroke-width:0.5;"/>
+      </defs>
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="33.421875" xlink:href="#m728421d6d4" y="230.4"/>
+      </g>
+     </g>
+     <g id="line2d_30">
+      <defs>
+       <path d="
+M0 0
+L-4 0" id="mcb0005524f" style="stroke:#000000;stroke-width:0.5;"/>
+      </defs>
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="368.221875" xlink:href="#mcb0005524f" y="230.4"/>
+      </g>
+     </g>
+     <g id="text_8">
+      <!-- −0.2 -->
+      <g transform="translate(7.2 233.159375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-2212"/>
+       <use x="83.7890625" xlink:href="#DejaVuSans-30"/>
+       <use x="147.412109375" xlink:href="#DejaVuSans-2e"/>
+       <use x="179.19921875" xlink:href="#DejaVuSans-32"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_2">
+     <g id="line2d_31">
+      <path clip-path="url(#pe880596f72)" d="
+M33.4219 196.062
+L368.222 196.062" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_32">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="33.421875" xlink:href="#m728421d6d4" y="196.061538462"/>
+      </g>
+     </g>
+     <g id="line2d_33">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="368.221875" xlink:href="#mcb0005524f" y="196.061538462"/>
+      </g>
+     </g>
+     <g id="text_9">
+      <!-- 0.0 -->
+      <g transform="translate(14.8421875 198.820913462)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_3">
+     <g id="line2d_34">
+      <path clip-path="url(#pe880596f72)" d="
+M33.4219 161.723
+L368.222 161.723" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_35">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="33.421875" xlink:href="#m728421d6d4" y="161.723076923"/>
+      </g>
+     </g>
+     <g id="line2d_36">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="368.221875" xlink:href="#mcb0005524f" y="161.723076923"/>
+      </g>
+     </g>
+     <g id="text_10">
+      <!-- 0.2 -->
+      <g transform="translate(15.1796875 164.482451923)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-32"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_4">
+     <g id="line2d_37">
+      <path clip-path="url(#pe880596f72)" d="
+M33.4219 127.385
+L368.222 127.385" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_38">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="33.421875" xlink:href="#m728421d6d4" y="127.384615385"/>
+      </g>
+     </g>
+     <g id="line2d_39">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="368.221875" xlink:href="#mcb0005524f" y="127.384615385"/>
+      </g>
+     </g>
+     <g id="text_11">
+      <!-- 0.4 -->
+      <g transform="translate(14.7390625 130.143990385)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-34"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_5">
+     <g id="line2d_40">
+      <path clip-path="url(#pe880596f72)" d="
+M33.4219 93.0462
+L368.222 93.0462" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_41">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="33.421875" xlink:href="#m728421d6d4" y="93.0461538462"/>
+      </g>
+     </g>
+     <g id="line2d_42">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="368.221875" xlink:href="#mcb0005524f" y="93.0461538462"/>
+      </g>
+     </g>
+     <g id="text_12">
+      <!-- 0.6 -->
+      <g transform="translate(14.8078125 95.8055288462)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-36"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_6">
+     <g id="line2d_43">
+      <path clip-path="url(#pe880596f72)" d="
+M33.4219 58.7077
+L368.222 58.7077" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_44">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="33.421875" xlink:href="#m728421d6d4" y="58.7076923077"/>
+      </g>
+     </g>
+     <g id="line2d_45">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="368.221875" xlink:href="#mcb0005524f" y="58.7076923077"/>
+      </g>
+     </g>
+     <g id="text_13">
+      <!-- 0.8 -->
+      <g transform="translate(14.8625 61.4670673077)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-38"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_7">
+     <g id="line2d_46">
+      <path clip-path="url(#pe880596f72)" d="
+M33.4219 24.3692
+L368.222 24.3692" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_47">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="33.421875" xlink:href="#m728421d6d4" y="24.3692307692"/>
+      </g>
+     </g>
+     <g id="line2d_48">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="368.221875" xlink:href="#mcb0005524f" y="24.3692307692"/>
+      </g>
+     </g>
+     <g id="text_14">
+      <!-- 1.0 -->
+      <g transform="translate(15.28125 27.1286057692)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-31"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+      </g>
+     </g>
+    </g>
+   </g>
+   <g id="patch_3">
+    <path d="
+M33.4219 7.2
+L368.222 7.2" style="fill:none;stroke:#000000;"/>
+   </g>
+   <g id="patch_4">
+    <path d="
+M368.222 230.4
+L368.222 7.2" style="fill:none;stroke:#000000;"/>
+   </g>
+   <g id="patch_5">
+    <path d="
+M33.4219 230.4
+L368.222 230.4" style="fill:none;stroke:#000000;"/>
+   </g>
+   <g id="patch_6">
+    <path d="
+M33.4219 230.4
+L33.4219 7.2" style="fill:none;stroke:#000000;"/>
+   </g>
+   <g id="text_15">
+    <!-- $\Delta s$ -->
+    <defs>
+     <path d="
+M8.6875 6.10938
+Q11.375 1.51562 19.4844 1.51562
+Q23 1.51562 26.1719 2.70312
+Q29.3438 3.90625 31.4219 6.29688
+Q33.5 8.6875 33.5 12.1094
+Q33.5 14.7031 31.6406 16.3594
+Q29.7812 18.0156 27.0938 18.6094
+L21.6875 19.6719
+Q17.9688 20.6094 15.5781 23.1406
+Q13.1875 25.6875 13.1875 29.2969
+Q13.1875 33.7344 15.5938 37.1562
+Q18.0156 40.5781 21.9688 42.375
+Q25.9219 44.1875 30.1719 44.1875
+Q34.7188 44.1875 38.2969 42.0156
+Q41.8906 39.8438 41.8906 35.5938
+Q41.8906 33.2969 40.5938 31.5312
+Q39.3125 29.7812 37.0156 29.7812
+Q35.6875 29.7812 34.7344 30.6406
+Q33.7969 31.5 33.7969 32.8125
+Q33.7969 33.9844 34.4531 35.0781
+Q35.1094 36.1875 36.2031 36.8438
+Q37.3125 37.5 38.4844 37.5
+Q37.5938 39.6562 35.1719 40.625
+Q32.7656 41.6094 29.9844 41.6094
+Q27.4375 41.6094 24.8906 40.5781
+Q22.3594 39.5469 20.8125 37.5625
+Q19.2812 35.5938 19.2812 32.9062
+Q19.2812 31.1094 20.5469 29.7344
+Q21.8281 28.375 23.6875 27.7812
+L29.5 26.6094
+Q32.2812 26.0312 34.5938 24.5312
+Q36.9219 23.0469 38.25 20.7656
+Q39.5938 18.5 39.5938 15.5781
+Q39.5938 11.8594 37.5156 8.25
+Q35.4531 4.64062 32.4219 2.48438
+Q27.0938 -1.125 19.3906 -1.125
+Q14.0625 -1.125 9.60938 1.3125
+Q5.17188 3.76562 5.17188 8.59375
+Q5.17188 11.3281 6.75 13.3438
+Q8.34375 15.375 11.0781 15.375
+Q12.7031 15.375 13.7969 14.3906
+Q14.8906 13.4219 14.8906 11.8125
+Q14.8906 9.51562 13.1719 7.8125
+Q11.4688 6.10938 9.1875 6.10938
+z
+" id="Cmmi10-73"/>
+     <path d="
+M5.42188 0
+Q4.59375 0 4.59375 0.78125
+Q4.64062 0.875 4.65625 0.921875
+Q4.6875 0.984375 4.6875 1.125
+L39.1094 70.5156
+Q39.5469 71.5781 40.9219 71.5781
+L42.2812 71.5781
+Q43.6562 71.5781 44.0938 70.5156
+L78.5156 1.125
+Q78.5625 1.03125 78.5781 0.953125
+Q78.6094 0.875 78.6094 0.78125
+Q78.6094 0 77.7812 0
+z
+
+M12.0156 8.01562
+L64.7031 8.01562
+L38.375 61.0781
+z
+" id="Cmr10-a2"/>
+    </defs>
+    <g transform="translate(239.452644231 93.0461538462)scale(0.25 -0.25)">
+     <use transform="translate(0.0 0.421875)" xlink:href="#Cmr10-a2"/>
+     <use transform="translate(83.30078125 0.421875)" xlink:href="#Cmmi10-73"/>
+    </g>
+   </g>
+   <g id="text_16">
+    <!-- $\Delta r$ -->
+    <defs>
+     <path d="
+M7.71875 1.70312
+Q7.71875 2.29688 7.8125 2.59375
+L15.2812 32.4219
+Q16.0156 35.2031 16.0156 37.3125
+Q16.0156 41.6094 13.0938 41.6094
+Q9.96875 41.6094 8.45312 37.8594
+Q6.9375 34.125 5.51562 28.4219
+Q5.51562 28.125 5.21875 27.9531
+Q4.9375 27.7812 4.6875 27.7812
+L3.51562 27.7812
+Q3.17188 27.7812 2.92188 28.1406
+Q2.6875 28.5156 2.6875 28.8125
+Q3.76562 33.1562 4.76562 36.1719
+Q5.76562 39.2031 7.89062 41.6875
+Q10.0156 44.1875 13.1875 44.1875
+Q16.6562 44.1875 19.2656 42.1875
+Q21.875 40.1875 22.5156 36.9219
+Q25.0469 40.2344 28.2969 42.2031
+Q31.5469 44.1875 35.4062 44.1875
+Q38.5781 44.1875 40.9844 42.3281
+Q43.4062 40.4844 43.4062 37.3125
+Q43.4062 34.7656 41.8125 32.875
+Q40.2344 31 37.5938 31
+Q35.9844 31 34.8906 32
+Q33.7969 33.0156 33.7969 34.625
+Q33.7969 36.8125 35.4062 38.5469
+Q37.0156 40.2812 39.1094 40.2812
+Q37.5 41.6094 35.2031 41.6094
+Q30.9062 41.6094 27.7344 38.5469
+Q24.5625 35.5 22.0156 30.8125
+L14.8906 2.20312
+Q14.5469 0.828125 13.3438 -0.140625
+Q12.1562 -1.125 10.6875 -1.125
+Q9.46875 -1.125 8.59375 -0.34375
+Q7.71875 0.4375 7.71875 1.70312" id="Cmmi10-72"/>
+    </defs>
+    <g transform="translate(218.849567308 67.2923076923)scale(0.25 -0.25)">
+     <use transform="translate(0.0 0.421875)" xlink:href="#Cmr10-a2"/>
+     <use transform="translate(83.30078125 0.421875)" xlink:href="#Cmmi10-72"/>
+    </g>
+   </g>
+   <g id="text_17">
+    <!-- $r\Delta \varphi$ -->
+    <defs>
+     <path d="
+M16.3125 -19
+Q16.3125 -18.6094 16.5 -17.8281
+L22.125 -0.203125
+Q14.6562 1.65625 9.8125 6.6875
+Q4.98438 11.7188 4.98438 19
+Q4.98438 22.6562 6.34375 27.25
+Q7.71875 31.8438 9.85938 35.9688
+Q12.0156 40.0938 14.5 42.8281
+Q15.0938 43.1094 15.1875 43.1094
+L16.4062 43.1094
+Q16.7031 43.1094 16.9375 42.8125
+Q17.1875 42.5312 17.1875 42.1875
+Q17.1875 41.7969 17 41.6094
+Q15.3281 39.7969 13.7344 37.1875
+Q12.1562 34.5781 10.9062 31.6875
+Q9.67188 28.8125 8.84375 25.6406
+Q8.01562 22.4688 8.01562 20.125
+Q8.01562 14.2031 12.7188 10.5625
+Q17.4375 6.9375 23.875 5.71875
+L26.7031 14.7031
+Q28.5625 20.5156 30.3906 25.0781
+Q32.2344 29.6406 34.9844 34
+Q37.75 38.375 41.6562 41.2812
+Q45.5625 44.1875 50.3906 44.1875
+Q54.2031 44.1875 56.7656 42.2812
+Q59.3281 40.375 60.5625 37.2031
+Q61.8125 34.0312 61.8125 30.4219
+Q61.8125 24.4688 59.1719 18.7812
+Q56.5469 13.0938 51.9531 8.5625
+Q47.3594 4.04688 41.5938 1.45312
+Q35.8438 -1.125 29.9844 -1.125
+Q29.2031 -1.07812 28.2969 -1.03125
+Q27.3906 -0.984375 26.8125 -0.984375
+L23.4844 -18.4062
+Q23.1875 -19.875 21.9844 -20.8281
+Q20.7969 -21.7812 19.2812 -21.7812
+Q18.0625 -21.7812 17.1875 -21.0156
+Q16.3125 -20.2656 16.3125 -19
+M27.875 5.17188
+Q29 5.07812 31.1094 5.07812
+Q37.3125 5.07812 43.7188 8.125
+Q50.1406 11.1875 54.3594 16.5
+Q58.5938 21.8281 58.5938 28.0781
+Q58.5938 30.9062 57.4375 33.1562
+Q56.2969 35.4062 54.2188 36.6875
+Q52.1562 37.9844 49.4219 37.9844
+Q41.6562 37.9844 36.4219 30.4688
+Q31.2031 22.9531 29.5938 14.3125
+z
+" id="Cmmi10-27"/>
+    </defs>
+    <g transform="translate(260.055721154 58.7076923077)scale(0.25 -0.25)">
+     <use transform="translate(0.0 0.421875)" xlink:href="#Cmmi10-72"/>
+     <use transform="translate(45.1171875 0.421875)" xlink:href="#Cmr10-a2"/>
+     <use transform="translate(128.41796875 0.421875)" xlink:href="#Cmmi10-27"/>
+    </g>
+   </g>
+  </g>
+ </g>
+ <defs>
+  <clipPath id="pe880596f72">
+   <rect height="223.2" width="334.8" x="33.421875" y="7.2"/>
+  </clipPath>
+ </defs>
+</svg>
diff --git a/docs/figures/Coordinates_13_0.svg b/docs/figures/Coordinates_13_0.svg
new file mode 100644
index 0000000000000000000000000000000000000000..13250ad0d6832cc499e2ab4fce634da5c5558f46
--- /dev/null
+++ b/docs/figures/Coordinates_13_0.svg
@@ -0,0 +1,1066 @@
+<?xml version="1.0" encoding="utf-8" standalone="no"?>
+<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
+  "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
+<!-- Created with matplotlib (http://matplotlib.org/) -->
+<svg height="349pt" version="1.1" viewBox="0 0 460 349" width="460pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
+ <defs>
+  <style type="text/css">
+*{stroke-linecap:butt;stroke-linejoin:round;}
+  </style>
+ </defs>
+ <g id="figure_1">
+  <g id="patch_1">
+   <path d="
+M0 349.2
+L460.8 349.2
+L460.8 0
+L0 0
+z
+" style="fill:none;"/>
+  </g>
+  <g id="patch_2">
+   <path d="
+M7.2 342
+L453.6 342
+L453.6 7.2
+L7.2 7.2
+z
+" style="fill:none;"/>
+  </g>
+  <g id="pane3d_1">
+   <g id="patch_3">
+    <path d="
+M66.3772 268.021
+L194.139 185.936
+L192.012 29.0839
+L57.1265 102.836" style="fill:#f2f2f2;opacity:0.5;stroke:#f2f2f2;"/>
+   </g>
+  </g>
+  <g id="pane3d_2">
+   <g id="patch_4">
+    <path d="
+M194.139 185.936
+L401.102 231.827
+L409.761 70.2452
+L192.012 29.0839" style="fill:#e6e6e6;opacity:0.5;stroke:#e6e6e6;"/>
+   </g>
+  </g>
+  <g id="pane3d_3">
+   <g id="patch_5">
+    <path d="
+M66.3772 268.021
+L284.13 321.469
+L401.102 231.827
+L194.139 185.936" style="fill:#ececec;opacity:0.5;stroke:#ececec;"/>
+   </g>
+  </g>
+  <g id="axis3d_1">
+   <g id="line2d_1">
+    <path d="
+M66.3772 268.021
+L284.13 321.469" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:0.75;"/>
+   </g>
+   <g id="Line3DCollection_1">
+    <defs>
+     <path d="
+M70.5414 -80.1569
+L198.11 -162.384
+L196.181 -319.328" id="C0_0_6dbb231e09"/>
+     <path d="
+M104.125 -71.9138
+L230.116 -155.287
+L229.796 -312.974" id="C0_1_feeec48bcc"/>
+     <path d="
+M138.196 -63.551
+L262.553 -148.095
+L263.886 -306.53" id="C0_2_e16c2fee18"/>
+     <path d="
+M172.766 -55.0659
+L295.429 -140.805
+L298.463 -299.994" id="C0_3_f62038b5c8"/>
+     <path d="
+M207.844 -46.4558
+L328.754 -133.415
+L333.535 -293.364" id="C0_4_8667fe2c06"/>
+     <path d="
+M243.444 -37.7179
+L362.537 -125.925
+L369.114 -286.638" id="C0_5_4445445264"/>
+     <path d="
+M279.575 -28.8493
+L396.787 -118.33
+L405.212 -279.815" id="C0_6_e476389679"/>
+    </defs>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C0_0_6dbb231e09" y="349.2"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C0_1_feeec48bcc" y="349.2"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C0_2_e16c2fee18" y="349.2"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C0_3_f62038b5c8" y="349.2"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C0_4_8667fe2c06" y="349.2"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C0_5_4445445264" y="349.2"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C0_6_e476389679" y="349.2"/>
+   </g>
+   <g id="xtick_1">
+    <g id="line2d_2">
+     <path d="
+M71.6403 268.335
+L68.3395 270.462" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_1">
+     <!-- −1.5 -->
+     <defs>
+      <path d="
+M12.4062 8.29688
+L28.5156 8.29688
+L28.5156 63.9219
+L10.9844 60.4062
+L10.9844 69.3906
+L28.4219 72.9062
+L38.2812 72.9062
+L38.2812 8.29688
+L54.3906 8.29688
+L54.3906 0
+L12.4062 0
+z
+" id="DejaVuSans-31"/>
+      <path d="
+M10.6875 12.4062
+L21 12.4062
+L21 0
+L10.6875 0
+z
+" id="DejaVuSans-2e"/>
+      <path d="
+M10.7969 72.9062
+L49.5156 72.9062
+L49.5156 64.5938
+L19.8281 64.5938
+L19.8281 46.7344
+Q21.9688 47.4688 24.1094 47.8281
+Q26.2656 48.1875 28.4219 48.1875
+Q40.625 48.1875 47.75 41.5
+Q54.8906 34.8125 54.8906 23.3906
+Q54.8906 11.625 47.5625 5.09375
+Q40.2344 -1.42188 26.9062 -1.42188
+Q22.3125 -1.42188 17.5469 -0.640625
+Q12.7969 0.140625 7.71875 1.70312
+L7.71875 11.625
+Q12.1094 9.23438 16.7969 8.0625
+Q21.4844 6.89062 26.7031 6.89062
+Q35.1562 6.89062 40.0781 11.3281
+Q45.0156 15.7656 45.0156 23.3906
+Q45.0156 31 40.0781 35.4375
+Q35.1562 39.8906 26.7031 39.8906
+Q22.75 39.8906 18.8125 39.0156
+Q14.8906 38.1406 10.7969 36.2812
+z
+" id="DejaVuSans-35"/>
+      <path d="
+M10.5938 35.5
+L73.1875 35.5
+L73.1875 27.2031
+L10.5938 27.2031
+z
+" id="DejaVuSans-2212"/>
+     </defs>
+     <g transform="translate(52.1384792021 290.400823554)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-2212"/>
+      <use x="83.7890625" xlink:href="#DejaVuSans-31"/>
+      <use x="147.412109375" xlink:href="#DejaVuSans-2e"/>
+      <use x="179.19921875" xlink:href="#DejaVuSans-35"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_2">
+    <g id="line2d_3">
+     <path d="
+M105.211 276.568
+L101.949 278.726" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_2">
+     <!-- −1.0 -->
+     <defs>
+      <path d="
+M31.7812 66.4062
+Q24.1719 66.4062 20.3281 58.9062
+Q16.5 51.4219 16.5 36.375
+Q16.5 21.3906 20.3281 13.8906
+Q24.1719 6.39062 31.7812 6.39062
+Q39.4531 6.39062 43.2812 13.8906
+Q47.125 21.3906 47.125 36.375
+Q47.125 51.4219 43.2812 58.9062
+Q39.4531 66.4062 31.7812 66.4062
+M31.7812 74.2188
+Q44.0469 74.2188 50.5156 64.5156
+Q56.9844 54.8281 56.9844 36.375
+Q56.9844 17.9688 50.5156 8.26562
+Q44.0469 -1.42188 31.7812 -1.42188
+Q19.5312 -1.42188 13.0625 8.26562
+Q6.59375 17.9688 6.59375 36.375
+Q6.59375 54.8281 13.0625 64.5156
+Q19.5312 74.2188 31.7812 74.2188" id="DejaVuSans-30"/>
+     </defs>
+     <g transform="translate(85.6142030457 298.755278427)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-2212"/>
+      <use x="83.7890625" xlink:href="#DejaVuSans-31"/>
+      <use x="147.412109375" xlink:href="#DejaVuSans-2e"/>
+      <use x="179.19921875" xlink:href="#DejaVuSans-30"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_3">
+    <g id="line2d_4">
+     <path d="
+M139.269 284.92
+L136.047 287.11" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_3">
+     <!-- −0.5 -->
+     <g transform="translate(119.787539097 307.231201607)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-2212"/>
+      <use x="83.7890625" xlink:href="#DejaVuSans-30"/>
+      <use x="147.412109375" xlink:href="#DejaVuSans-2e"/>
+      <use x="179.19921875" xlink:href="#DejaVuSans-35"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_4">
+    <g id="line2d_5">
+     <path d="
+M173.824 293.394
+L170.645 295.616" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_4">
+     <!-- 0.0 -->
+     <g transform="translate(158.240307054 315.831261598)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-30"/>
+      <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+      <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_5">
+    <g id="line2d_6">
+     <path d="
+M208.888 301.994
+L205.753 304.248" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_5">
+     <!-- 0.5 -->
+     <g transform="translate(193.422611864 324.558205645)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-30"/>
+      <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+      <use x="95.41015625" xlink:href="#DejaVuSans-35"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_6">
+    <g id="line2d_7">
+     <path d="
+M244.472 310.72
+L241.382 313.009" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_6">
+     <!-- 1.0 -->
+     <g transform="translate(229.136449232 333.41486266)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-31"/>
+      <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+      <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_7">
+    <g id="line2d_8">
+     <path d="
+M280.588 319.577
+L277.545 321.9" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_7">
+     <!-- 1.5 -->
+     <g transform="translate(265.373217911 342.404146281)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-31"/>
+      <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+      <use x="95.41015625" xlink:href="#DejaVuSans-35"/>
+     </g>
+    </g>
+   </g>
+  </g>
+  <g id="axis3d_2">
+   <g id="line2d_9">
+    <path d="
+M401.102 231.827
+L284.13 321.469" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:0.75;"/>
+   </g>
+   <g id="Line3DCollection_2">
+    <defs>
+     <path d="
+M60.0396 -247.957
+L69.1259 -82.945
+L286.655 -29.6664" id="C1_0_e83b294e73"/>
+     <path d="
+M87.5297 -262.988
+L95.0878 -99.6252
+L310.484 -47.9281" id="C1_1_a90f82e69d"/>
+     <path d="
+M114.186 -277.563
+L120.302 -115.825
+L333.596 -65.6398" id="C1_2_25a425022f"/>
+     <path d="
+M140.046 -291.702
+L144.799 -131.564
+L356.021 -82.826" id="C1_3_74005219bc"/>
+     <path d="
+M165.144 -305.425
+L168.61 -146.862
+L377.792 -99.5096" id="C1_4_9163df4ffc"/>
+     <path d="
+M189.514 -318.75
+L191.764 -161.738
+L398.934 -115.712" id="C1_5_a11c11b842"/>
+    </defs>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C1_0_e83b294e73" y="349.2"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C1_1_a90f82e69d" y="349.2"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C1_2_25a425022f" y="349.2"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C1_3_74005219bc" y="349.2"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C1_4_9163df4ffc" y="349.2"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C1_5_a11c11b842" y="349.2"/>
+   </g>
+   <g id="xtick_8">
+    <g id="line2d_10">
+     <path d="
+M284.834 319.088
+L290.3 320.427" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_8">
+     <!-- −1.0 -->
+     <g transform="translate(287.968527747 339.263129177)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-2212"/>
+      <use x="83.7890625" xlink:href="#DejaVuSans-31"/>
+      <use x="147.412109375" xlink:href="#DejaVuSans-2e"/>
+      <use x="179.19921875" xlink:href="#DejaVuSans-30"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_9">
+    <g id="line2d_11">
+     <path d="
+M308.682 300.839
+L314.091 302.138" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_9">
+     <!-- −0.5 -->
+     <g transform="translate(311.70065877 320.823217704)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-2212"/>
+      <use x="83.7890625" xlink:href="#DejaVuSans-30"/>
+      <use x="147.412109375" xlink:href="#DejaVuSans-2e"/>
+      <use x="179.19921875" xlink:href="#DejaVuSans-35"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_10">
+    <g id="line2d_12">
+     <path d="
+M331.813 283.141
+L337.165 284.4" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_10">
+     <!-- 0.0 -->
+     <g transform="translate(338.501859746 302.938513603)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-30"/>
+      <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+      <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_11">
+    <g id="line2d_13">
+     <path d="
+M354.257 265.967
+L359.554 267.189" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_11">
+     <!-- 0.5 -->
+     <g transform="translate(360.842845924 285.584313657)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-30"/>
+      <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+      <use x="95.41015625" xlink:href="#DejaVuSans-35"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_12">
+    <g id="line2d_14">
+     <path d="
+M376.045 249.295
+L381.288 250.482" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_12">
+     <!-- 1.0 -->
+     <g transform="translate(382.544044698 268.737358747)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-31"/>
+      <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+      <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_13">
+    <g id="line2d_15">
+     <path d="
+M397.206 233.104
+L402.395 234.256" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_13">
+     <!-- 1.5 -->
+     <g transform="translate(403.613228871 252.375729849)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-31"/>
+      <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+      <use x="95.41015625" xlink:href="#DejaVuSans-35"/>
+     </g>
+    </g>
+   </g>
+  </g>
+  <g id="axis3d_3">
+   <g id="line2d_16">
+    <path d="
+M401.102 231.827
+L409.761 70.2452" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:0.75;"/>
+   </g>
+   <g id="Line3DCollection_3">
+    <defs>
+     <path d="
+M401.266 -120.447
+L194.099 -166.254
+L66.2016 -84.3155" id="C2_0_66aa91ea51"/>
+     <path d="
+M402.15 -136.942
+L193.881 -182.296
+L65.2586 -101.153" id="C2_1_d1774cc12f"/>
+     <path d="
+M403.044 -153.615
+L193.661 -198.504
+L64.3051 -118.179" id="C2_2_386623733c"/>
+     <path d="
+M403.947 -170.468
+L193.439 -214.881
+L63.341 -135.395" id="C2_3_1cdf9b904c"/>
+     <path d="
+M404.86 -187.506
+L193.215 -231.428
+L62.366 -152.806" id="C2_4_6736b09f0b"/>
+     <path d="
+M405.783 -204.73
+L192.988 -248.149
+L61.3799 -170.413" id="C2_5_a99d352fc5"/>
+     <path d="
+M406.716 -222.144
+L192.759 -265.046
+L60.3826 -188.221" id="C2_6_5c4637a538"/>
+     <path d="
+M407.66 -239.751
+L192.527 -282.122
+L59.3739 -206.234" id="C2_7_8cc5f02395"/>
+     <path d="
+M408.614 -257.554
+L192.293 -299.381
+L58.3536 -224.453" id="C2_8_57e3711ea2"/>
+     <path d="
+M409.579 -275.557
+L192.057 -316.825
+L57.3214 -242.884" id="C2_9_1f0a1875d8"/>
+    </defs>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C2_0_66aa91ea51" y="349.2"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C2_1_d1774cc12f" y="349.2"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C2_2_386623733c" y="349.2"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C2_3_1cdf9b904c" y="349.2"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C2_4_6736b09f0b" y="349.2"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C2_5_a99d352fc5" y="349.2"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C2_6_5c4637a538" y="349.2"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C2_7_8cc5f02395" y="349.2"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C2_8_57e3711ea2" y="349.2"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C2_9_1f0a1875d8" y="349.2"/>
+   </g>
+   <g id="xtick_14">
+    <g id="line2d_17">
+     <path d="
+M399.538 228.371
+L404.727 229.519" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_14">
+     <!-- 0.0 -->
+     <g transform="translate(412.113094547 234.396104679)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-30"/>
+      <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+      <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_15">
+    <g id="line2d_18">
+     <path d="
+M400.412 211.88
+L405.63 213.016" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_15">
+     <!-- 0.2 -->
+     <defs>
+      <path d="
+M19.1875 8.29688
+L53.6094 8.29688
+L53.6094 0
+L7.32812 0
+L7.32812 8.29688
+Q12.9375 14.1094 22.625 23.8906
+Q32.3281 33.6875 34.8125 36.5312
+Q39.5469 41.8438 41.4219 45.5312
+Q43.3125 49.2188 43.3125 52.7812
+Q43.3125 58.5938 39.2344 62.25
+Q35.1562 65.9219 28.6094 65.9219
+Q23.9688 65.9219 18.8125 64.3125
+Q13.6719 62.7031 7.8125 59.4219
+L7.8125 69.3906
+Q13.7656 71.7812 18.9375 73
+Q24.125 74.2188 28.4219 74.2188
+Q39.75 74.2188 46.4844 68.5469
+Q53.2188 62.8906 53.2188 53.4219
+Q53.2188 48.9219 51.5312 44.8906
+Q49.8594 40.875 45.4062 35.4062
+Q44.1875 33.9844 37.6406 27.2188
+Q31.1094 20.4531 19.1875 8.29688" id="DejaVuSans-32"/>
+     </defs>
+     <g transform="translate(413.261319963 217.919947398)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-30"/>
+      <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+      <use x="95.41015625" xlink:href="#DejaVuSans-32"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_16">
+    <g id="line2d_19">
+     <path d="
+M401.296 195.211
+L406.543 196.336" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_16">
+     <!-- 0.4 -->
+     <defs>
+      <path d="
+M37.7969 64.3125
+L12.8906 25.3906
+L37.7969 25.3906
+z
+
+M35.2031 72.9062
+L47.6094 72.9062
+L47.6094 25.3906
+L58.0156 25.3906
+L58.0156 17.1875
+L47.6094 17.1875
+L47.6094 0
+L37.7969 0
+L37.7969 17.1875
+L4.89062 17.1875
+L4.89062 26.7031
+z
+" id="DejaVuSans-34"/>
+     </defs>
+     <g transform="translate(414.031025948 201.266440815)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-30"/>
+      <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+      <use x="95.41015625" xlink:href="#DejaVuSans-34"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_17">
+    <g id="line2d_20">
+     <path d="
+M402.189 178.361
+L407.466 179.474" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_17">
+     <!-- 0.6 -->
+     <defs>
+      <path d="
+M33.0156 40.375
+Q26.375 40.375 22.4844 35.8281
+Q18.6094 31.2969 18.6094 23.3906
+Q18.6094 15.5312 22.4844 10.9531
+Q26.375 6.39062 33.0156 6.39062
+Q39.6562 6.39062 43.5312 10.9531
+Q47.4062 15.5312 47.4062 23.3906
+Q47.4062 31.2969 43.5312 35.8281
+Q39.6562 40.375 33.0156 40.375
+M52.5938 71.2969
+L52.5938 62.3125
+Q48.875 64.0625 45.0938 64.9844
+Q41.3125 65.9219 37.5938 65.9219
+Q27.8281 65.9219 22.6719 59.3281
+Q17.5312 52.7344 16.7969 39.4062
+Q19.6719 43.6562 24.0156 45.9219
+Q28.375 48.1875 33.5938 48.1875
+Q44.5781 48.1875 50.9531 41.5156
+Q57.3281 34.8594 57.3281 23.3906
+Q57.3281 12.1562 50.6875 5.35938
+Q44.0469 -1.42188 33.0156 -1.42188
+Q20.3594 -1.42188 13.6719 8.26562
+Q6.98438 17.9688 6.98438 36.375
+Q6.98438 53.6562 15.1875 63.9375
+Q23.3906 74.2188 37.2031 74.2188
+Q40.9219 74.2188 44.7031 73.4844
+Q48.4844 72.75 52.5938 71.2969" id="DejaVuSans-36"/>
+     </defs>
+     <g transform="translate(415.066133652 184.432705956)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-30"/>
+      <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+      <use x="95.41015625" xlink:href="#DejaVuSans-36"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_18">
+    <g id="line2d_21">
+     <path d="
+M403.093 161.327
+L408.399 162.429" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_18">
+     <!-- 0.8 -->
+     <defs>
+      <path d="
+M31.7812 34.625
+Q24.75 34.625 20.7188 30.8594
+Q16.7031 27.0938 16.7031 20.5156
+Q16.7031 13.9219 20.7188 10.1562
+Q24.75 6.39062 31.7812 6.39062
+Q38.8125 6.39062 42.8594 10.1719
+Q46.9219 13.9688 46.9219 20.5156
+Q46.9219 27.0938 42.8906 30.8594
+Q38.875 34.625 31.7812 34.625
+M21.9219 38.8125
+Q15.5781 40.375 12.0312 44.7188
+Q8.5 49.0781 8.5 55.3281
+Q8.5 64.0625 14.7188 69.1406
+Q20.9531 74.2188 31.7812 74.2188
+Q42.6719 74.2188 48.875 69.1406
+Q55.0781 64.0625 55.0781 55.3281
+Q55.0781 49.0781 51.5312 44.7188
+Q48 40.375 41.7031 38.8125
+Q48.8281 37.1562 52.7969 32.3125
+Q56.7812 27.4844 56.7812 20.5156
+Q56.7812 9.90625 50.3125 4.23438
+Q43.8438 -1.42188 31.7812 -1.42188
+Q19.7344 -1.42188 13.25 4.23438
+Q6.78125 9.90625 6.78125 20.5156
+Q6.78125 27.4844 10.7812 32.3125
+Q14.7969 37.1562 21.9219 38.8125
+M18.3125 54.3906
+Q18.3125 48.7344 21.8438 45.5625
+Q25.3906 42.3906 31.7812 42.3906
+Q38.1406 42.3906 41.7188 45.5625
+Q45.3125 48.7344 45.3125 54.3906
+Q45.3125 60.0625 41.7188 63.2344
+Q38.1406 66.4062 31.7812 66.4062
+Q25.3906 66.4062 21.8438 63.2344
+Q18.3125 60.0625 18.3125 54.3906" id="DejaVuSans-38"/>
+     </defs>
+     <g transform="translate(416.105099201 167.415801193)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-30"/>
+      <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+      <use x="95.41015625" xlink:href="#DejaVuSans-38"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_19">
+    <g id="line2d_22">
+     <path d="
+M404.006 144.107
+L409.342 145.196" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_19">
+     <!-- 1.0 -->
+     <g transform="translate(417.337163793 150.212720529)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-31"/>
+      <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+      <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_20">
+    <g id="line2d_23">
+     <path d="
+M404.929 126.698
+L410.295 127.774" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_20">
+     <!-- 1.2 -->
+     <g transform="translate(418.539853812 132.820391834)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-31"/>
+      <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+      <use x="95.41015625" xlink:href="#DejaVuSans-32"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_21">
+    <g id="line2d_24">
+     <path d="
+M405.862 109.095
+L411.259 110.158" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_21">
+     <!-- 1.4 -->
+     <g transform="translate(419.364918429 115.235675009)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-31"/>
+      <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+      <use x="95.41015625" xlink:href="#DejaVuSans-34"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_22">
+    <g id="line2d_25">
+     <path d="
+M406.806 91.2962
+L412.234 92.3459" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_22">
+     <!-- 1.6 -->
+     <g transform="translate(420.456298472 97.4553601013)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-31"/>
+      <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+      <use x="95.41015625" xlink:href="#DejaVuSans-36"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_23">
+    <g id="line2d_26">
+     <path d="
+M407.76 73.2981
+L413.22 74.334" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_23">
+     <!-- 1.8 -->
+     <g transform="translate(421.552470283 79.4761653474)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-31"/>
+      <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+      <use x="95.41015625" xlink:href="#DejaVuSans-38"/>
+     </g>
+    </g>
+   </g>
+  </g>
+  <g id="axes_1">
+   <g id="line2d_27">
+    <path clip-path="url(#p2ec81d7b81)" d="
+M239.553 236.059
+L242.531 234.38
+L245.554 232.891
+L248.581 231.586
+L251.571 230.458
+L254.487 229.503
+L257.291 228.716
+L259.949 228.09
+L262.426 227.619
+L264.69 227.296
+L266.71 227.113
+L268.458 227.059
+L269.906 227.125
+L271.031 227.3
+L271.81 227.57
+L272.224 227.924
+L272.258 228.347
+L271.896 228.824
+L271.13 229.34
+L269.951 229.879
+L268.357 230.423
+L266.348 230.957
+L263.928 231.463
+L261.104 231.923
+L257.887 232.32
+L254.293 232.637
+L250.341 232.858
+L246.054 232.964
+L241.458 232.942
+L236.582 232.775
+L231.46 232.451
+L226.128 231.955
+L220.624 231.278
+L214.991 230.407
+L209.27 229.335
+L203.508 228.056
+L197.749 226.563
+L192.042 224.853
+L186.432 222.926
+L180.968 220.781
+L175.695 218.42
+L170.66 215.849
+L165.905 213.072
+L161.472 210.099
+L157.402 206.939
+L153.73 203.602
+L150.491 200.103
+L147.714 196.454
+L145.426 192.672
+L143.65 188.773
+L142.404 184.774
+L141.703 180.694
+L141.558 176.551
+L141.974 172.364
+L142.954 168.153
+L144.495 163.938
+L146.592 159.738
+L149.235 155.572
+L152.409 151.459
+L156.097 147.417
+L160.279 143.465
+L164.931 139.619
+L170.026 135.897
+L175.534 132.314
+L181.423 128.883
+L187.659 125.62
+L194.204 122.537
+L201.02 119.645
+L208.068 116.954
+L215.305 114.475
+L222.689 112.214
+L230.175 110.179
+L237.718 108.376
+L245.274 106.809
+L252.796 105.48
+L260.237 104.392
+L267.551 103.545
+L274.692 102.938
+L281.612 102.569
+L288.267 102.435
+L294.611 102.53
+L300.6 102.849
+L306.19 103.383
+L311.34 104.124
+L316.008 105.061
+L320.157 106.183
+L323.749 107.475
+L326.752 108.924
+L329.133 110.514
+L330.863 112.227
+L331.919 114.046
+L332.278 115.95
+L331.924 117.918
+L330.842 119.93
+L329.026 121.961
+L326.471 123.989
+L323.179 125.989
+L319.158 127.937
+L314.421 129.808
+L308.987 131.576" style="fill:none;stroke:#0000ff;stroke-linecap:square;"/>
+   </g>
+   <g id="line2d_28">
+    <path clip-path="url(#p2ec81d7b81)" d="
+M169.366 136.355
+L173.076 133.863
+L176.972 131.441
+L181.045 129.093
+L185.282 126.823
+L189.672 124.637
+L194.204 122.537
+L198.863 120.527
+L203.638 118.612
+L208.515 116.793" style="fill:none;stroke:#ff0000;stroke-linecap:square;"/>
+   </g>
+   <g id="line2d_29">
+    <path clip-path="url(#p2ec81d7b81)" d="
+M169.366 136.355
+L173.095 134.83
+L177.008 133.374
+L181.095 131.99
+L185.344 130.685
+L189.743 129.461
+L194.281 128.323
+L198.943 127.275
+L203.718 126.32
+L208.591 125.463" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+   </g>
+   <g id="line2d_30">
+    <path clip-path="url(#p2ec81d7b81)" d="
+M209.234 126.901
+L208.515 116.793" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+   </g>
+   <g id="text_24">
+    <!-- $\Delta s$ -->
+    <defs>
+     <path d="
+M8.6875 6.10938
+Q11.375 1.51562 19.4844 1.51562
+Q23 1.51562 26.1719 2.70312
+Q29.3438 3.90625 31.4219 6.29688
+Q33.5 8.6875 33.5 12.1094
+Q33.5 14.7031 31.6406 16.3594
+Q29.7812 18.0156 27.0938 18.6094
+L21.6875 19.6719
+Q17.9688 20.6094 15.5781 23.1406
+Q13.1875 25.6875 13.1875 29.2969
+Q13.1875 33.7344 15.5938 37.1562
+Q18.0156 40.5781 21.9688 42.375
+Q25.9219 44.1875 30.1719 44.1875
+Q34.7188 44.1875 38.2969 42.0156
+Q41.8906 39.8438 41.8906 35.5938
+Q41.8906 33.2969 40.5938 31.5312
+Q39.3125 29.7812 37.0156 29.7812
+Q35.6875 29.7812 34.7344 30.6406
+Q33.7969 31.5 33.7969 32.8125
+Q33.7969 33.9844 34.4531 35.0781
+Q35.1094 36.1875 36.2031 36.8438
+Q37.3125 37.5 38.4844 37.5
+Q37.5938 39.6562 35.1719 40.625
+Q32.7656 41.6094 29.9844 41.6094
+Q27.4375 41.6094 24.8906 40.5781
+Q22.3594 39.5469 20.8125 37.5625
+Q19.2812 35.5938 19.2812 32.9062
+Q19.2812 31.1094 20.5469 29.7344
+Q21.8281 28.375 23.6875 27.7812
+L29.5 26.6094
+Q32.2812 26.0312 34.5938 24.5312
+Q36.9219 23.0469 38.25 20.7656
+Q39.5938 18.5 39.5938 15.5781
+Q39.5938 11.8594 37.5156 8.25
+Q35.4531 4.64062 32.4219 2.48438
+Q27.0938 -1.125 19.3906 -1.125
+Q14.0625 -1.125 9.60938 1.3125
+Q5.17188 3.76562 5.17188 8.59375
+Q5.17188 11.3281 6.75 13.3438
+Q8.34375 15.375 11.0781 15.375
+Q12.7031 15.375 13.7969 14.3906
+Q14.8906 13.4219 14.8906 11.8125
+Q14.8906 9.51562 13.1719 7.8125
+Q11.4688 6.10938 9.1875 6.10938
+z
+" id="Cmmi10-73"/>
+     <path d="
+M5.42188 0
+Q4.59375 0 4.59375 0.78125
+Q4.64062 0.875 4.65625 0.921875
+Q4.6875 0.984375 4.6875 1.125
+L39.1094 70.5156
+Q39.5469 71.5781 40.9219 71.5781
+L42.2812 71.5781
+Q43.6562 71.5781 44.0938 70.5156
+L78.5156 1.125
+Q78.5625 1.03125 78.5781 0.953125
+Q78.6094 0.875 78.6094 0.78125
+Q78.6094 0 77.7812 0
+z
+
+M12.0156 8.01562
+L64.7031 8.01562
+L38.375 61.0781
+z
+" id="Cmr10-a2"/>
+    </defs>
+    <g transform="translate(169.737159963 122.104380371)scale(0.2 -0.2)">
+     <use transform="translate(0.0 0.421875)" xlink:href="#Cmr10-a2"/>
+     <use transform="translate(83.30078125 0.421875)" xlink:href="#Cmmi10-73"/>
+    </g>
+   </g>
+   <g id="text_25">
+    <!-- $\Delta l$ -->
+    <defs>
+     <path d="
+M4.39062 8.10938
+Q4.39062 8.40625 4.46875 8.98438
+Q4.54688 9.57812 4.60938 10.125
+Q4.6875 10.6875 4.6875 10.9844
+L17.0938 60.5
+Q17.4844 62.2031 17.5781 63.1875
+Q17.5781 64.7969 11.0781 64.7969
+Q10.1094 64.7969 10.1094 66.1094
+Q10.1562 66.3594 10.3281 66.9844
+Q10.5 67.625 10.7656 67.9688
+Q11.0312 68.3125 11.5312 68.3125
+L25 69.3906
+Q26.2188 69.3906 26.2188 68.1094
+L11.8125 10.5938
+Q11.0781 8.98438 11.0781 5.8125
+Q11.0781 1.51562 14.0156 1.51562
+Q17.0938 1.51562 18.625 5.34375
+Q20.1719 9.1875 21.3906 14.7031
+Q21.5781 15.2812 22.2188 15.2812
+L23.3906 15.2812
+Q23.7812 15.2812 24.0469 14.9688
+Q24.3125 14.6562 24.3125 14.3125
+Q23.1406 9.46875 22.1875 6.65625
+Q21.2344 3.85938 19.1406 1.35938
+Q17.0469 -1.125 13.8125 -1.125
+Q9.8125 -1.125 7.09375 1.45312
+Q4.39062 4.04688 4.39062 8.10938" id="Cmmi10-6c"/>
+    </defs>
+    <g transform="translate(170.375403529 152.559609567)scale(0.2 -0.2)">
+     <use transform="translate(0.0 0.421875)" xlink:href="#Cmr10-a2"/>
+     <use transform="translate(83.30078125 0.421875)" xlink:href="#Cmmi10-6c"/>
+    </g>
+   </g>
+   <g id="text_26">
+    <!-- $\Delta z$ -->
+    <defs>
+     <path d="
+M4.89062 -1.125
+Q4.10938 -1.125 4.10938 -0.203125
+Q4.10938 0.296875 4.29688 0.484375
+Q6.98438 5.125 10.7656 9.34375
+Q14.5469 13.5781 19.3594 17.8906
+Q24.1719 22.2188 29.0312 26.5625
+Q33.8906 30.9062 36.9219 34.2812
+L36.5312 34.2812
+Q34.3281 34.2812 30.0781 35.6875
+Q25.8281 37.1094 23.3906 37.1094
+Q20.75 37.1094 18.25 35.9531
+Q15.7656 34.8125 15.0938 32.4219
+Q14.9375 31.6875 14.3125 31.6875
+L13.0938 31.6875
+Q12.3125 31.6875 12.3125 32.7188
+L12.3125 33.0156
+Q13.0938 35.9375 14.875 38.4688
+Q16.6562 41.0156 19.2656 42.5938
+Q21.875 44.1875 24.7031 44.1875
+Q26.7031 44.1875 28.0156 43.2812
+Q29.3438 42.3906 31.0938 40.4844
+Q32.8594 38.5781 33.9531 37.75
+Q35.0625 36.9219 36.7188 36.9219
+Q38.9219 36.9219 40.6562 38.9219
+Q42.3906 40.9219 44.0938 43.8906
+Q44.3906 44.1875 44.8281 44.1875
+L46 44.1875
+Q46.3438 44.1875 46.5625 43.9375
+Q46.7812 43.7031 46.7812 43.3125
+Q46.7812 42.9688 46.5781 42.6719
+Q43.8906 38.0312 40.2969 34
+Q36.7188 29.9844 30.9219 24.7812
+Q25.1406 19.5781 21.1562 15.9844
+Q17.1875 12.4062 13.7188 8.59375
+Q14.5 8.79688 15.8281 8.79688
+Q18.2656 8.79688 22.4844 7.39062
+Q26.7031 6 29 6
+Q31.5 6 34.0312 7.07812
+Q36.5781 8.15625 38.4219 10.1094
+Q40.2812 12.0625 40.9219 14.5938
+Q41.1562 15.2812 41.7031 15.2812
+L42.9219 15.2812
+Q43.3125 15.2812 43.5469 14.9688
+Q43.7969 14.6562 43.7969 14.3125
+Q43.7969 14.2031 43.7031 14.0156
+Q42.7812 10.2031 40.4844 6.76562
+Q38.1875 3.32812 34.8438 1.09375
+Q31.5 -1.125 27.6875 -1.125
+Q25.7812 -1.125 24.4531 -0.234375
+Q23.1406 0.640625 21.3594 2.5625
+Q19.5781 4.5 18.4531 5.34375
+Q17.3281 6.20312 15.7188 6.20312
+Q10.75 6.20312 6.78125 -0.78125
+Q6.45312 -1.125 6.10938 -1.125
+z
+" id="Cmmi10-7a"/>
+    </defs>
+    <g transform="translate(208.145143068 125.623733075)scale(0.2 -0.2)">
+     <use transform="translate(0.0 0.421875)" xlink:href="#Cmr10-a2"/>
+     <use transform="translate(83.30078125 0.421875)" xlink:href="#Cmmi10-7a"/>
+    </g>
+   </g>
+  </g>
+ </g>
+ <defs>
+  <clipPath id="p2ec81d7b81">
+   <rect height="334.8" width="446.4" x="7.2" y="7.2"/>
+  </clipPath>
+ </defs>
+</svg>
diff --git a/docs/figures/Coordinates_15_0.svg b/docs/figures/Coordinates_15_0.svg
new file mode 100644
index 0000000000000000000000000000000000000000..863f9af3d402305cb8538c3593c2a1d151026cd0
--- /dev/null
+++ b/docs/figures/Coordinates_15_0.svg
@@ -0,0 +1,2937 @@
+<?xml version="1.0" encoding="utf-8" standalone="no"?>
+<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
+  "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
+<!-- Created with matplotlib (http://matplotlib.org/) -->
+<svg height="302pt" version="1.1" viewBox="0 0 590 302" width="590pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
+ <defs>
+  <style type="text/css">
+*{stroke-linecap:butt;stroke-linejoin:round;}
+  </style>
+ </defs>
+ <g id="figure_1">
+  <g id="patch_1">
+   <path d="
+M0 302.4
+L590.4 302.4
+L590.4 0
+L0 0
+z
+" style="fill:none;"/>
+  </g>
+  <g id="patch_2">
+   <path d="
+M7.2 295.2
+L583.2 295.2
+L583.2 7.2
+L7.2 7.2
+z
+" style="fill:none;"/>
+  </g>
+  <g id="pane3d_1">
+   <g id="patch_3">
+    <path d="
+M83.5577 231.562
+L248.412 160.951
+L245.667 26.0249
+L71.6214 89.4675" style="fill:#f2f2f2;opacity:0.5;stroke:#f2f2f2;"/>
+   </g>
+  </g>
+  <g id="pane3d_2">
+   <g id="patch_4">
+    <path d="
+M248.412 160.951
+L515.46 200.427
+L526.633 61.4324
+L245.667 26.0249" style="fill:#e6e6e6;opacity:0.5;stroke:#e6e6e6;"/>
+   </g>
+  </g>
+  <g id="pane3d_3">
+   <g id="patch_5">
+    <path d="
+M83.5577 231.562
+L364.529 277.539
+L515.46 200.427
+L248.412 160.951" style="fill:#ececec;opacity:0.5;stroke:#ececec;"/>
+   </g>
+  </g>
+  <g id="axis3d_1">
+   <g id="line2d_1">
+    <path d="
+M83.5577 231.562
+L364.529 277.539" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:0.75;"/>
+   </g>
+   <g id="Line3DCollection_1">
+    <defs>
+     <path d="
+M88.9308 -69.9586
+L253.536 -140.692
+L251.047 -275.697" id="C0_0_6e0819b1ef"/>
+     <path d="
+M121.373 -64.65
+L284.458 -136.121
+L283.52 -271.605" id="C0_1_0a51cddd88"/>
+     <path d="
+M154.166 -59.2839
+L315.691 -131.504
+L316.337 -267.469" id="C0_2_d9b746a397"/>
+     <path d="
+M187.318 -53.8591
+L347.239 -126.84
+L349.503 -263.29" id="C0_3_bd0bdfce4d"/>
+     <path d="
+M220.833 -48.3749
+L379.109 -122.129
+L383.023 -259.065" id="C0_4_2eae2b294e"/>
+     <path d="
+M254.718 -42.8302
+L411.304 -117.37
+L416.903 -254.796" id="C0_5_7a129ce08b"/>
+     <path d="
+M288.978 -37.2241
+L443.829 -112.562
+L451.149 -250.48" id="C0_6_953bea186f"/>
+     <path d="
+M323.621 -31.5554
+L476.691 -107.704
+L485.767 -246.118" id="C0_7_d01f06349c"/>
+     <path d="
+M358.652 -25.8231
+L509.893 -102.796
+L520.763 -241.707" id="C0_8_3a55c1636e"/>
+    </defs>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C0_0_6e0819b1ef" y="302.4"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C0_1_0a51cddd88" y="302.4"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C0_2_d9b746a397" y="302.4"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C0_3_bd0bdfce4d" y="302.4"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C0_4_2eae2b294e" y="302.4"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C0_5_7a129ce08b" y="302.4"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C0_6_953bea186f" y="302.4"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C0_7_d01f06349c" y="302.4"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C0_8_3a55c1636e" y="302.4"/>
+   </g>
+   <g id="xtick_1">
+    <g id="line2d_2">
+     <path d="
+M90.3488 231.832
+L86.0897 233.662" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_1">
+     <!-- −1.5 -->
+     <defs>
+      <path d="
+M12.4062 8.29688
+L28.5156 8.29688
+L28.5156 63.9219
+L10.9844 60.4062
+L10.9844 69.3906
+L28.4219 72.9062
+L38.2812 72.9062
+L38.2812 8.29688
+L54.3906 8.29688
+L54.3906 0
+L12.4062 0
+z
+" id="DejaVuSans-31"/>
+      <path d="
+M10.6875 12.4062
+L21 12.4062
+L21 0
+L10.6875 0
+z
+" id="DejaVuSans-2e"/>
+      <path d="
+M10.7969 72.9062
+L49.5156 72.9062
+L49.5156 64.5938
+L19.8281 64.5938
+L19.8281 46.7344
+Q21.9688 47.4688 24.1094 47.8281
+Q26.2656 48.1875 28.4219 48.1875
+Q40.625 48.1875 47.75 41.5
+Q54.8906 34.8125 54.8906 23.3906
+Q54.8906 11.625 47.5625 5.09375
+Q40.2344 -1.42188 26.9062 -1.42188
+Q22.3125 -1.42188 17.5469 -0.640625
+Q12.7969 0.140625 7.71875 1.70312
+L7.71875 11.625
+Q12.1094 9.23438 16.7969 8.0625
+Q21.4844 6.89062 26.7031 6.89062
+Q35.1562 6.89062 40.0781 11.3281
+Q45.0156 15.7656 45.0156 23.3906
+Q45.0156 31 40.0781 35.4375
+Q35.1562 39.8906 26.7031 39.8906
+Q22.75 39.8906 18.8125 39.0156
+Q14.8906 38.1406 10.7969 36.2812
+z
+" id="DejaVuSans-35"/>
+      <path d="
+M10.5938 35.5
+L73.1875 35.5
+L73.1875 27.2031
+L10.5938 27.2031
+z
+" id="DejaVuSans-2212"/>
+     </defs>
+     <g transform="translate(68.4294892931 251.875758836)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-2212"/>
+      <use x="83.7890625" xlink:href="#DejaVuSans-31"/>
+      <use x="147.412109375" xlink:href="#DejaVuSans-2e"/>
+      <use x="179.19921875" xlink:href="#DejaVuSans-35"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_2">
+    <g id="line2d_3">
+     <path d="
+M122.778 237.134
+L118.557 238.984" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_2">
+     <!-- −1.0 -->
+     <defs>
+      <path d="
+M31.7812 66.4062
+Q24.1719 66.4062 20.3281 58.9062
+Q16.5 51.4219 16.5 36.375
+Q16.5 21.3906 20.3281 13.8906
+Q24.1719 6.39062 31.7812 6.39062
+Q39.4531 6.39062 43.2812 13.8906
+Q47.125 21.3906 47.125 36.375
+Q47.125 51.4219 43.2812 58.9062
+Q39.4531 66.4062 31.7812 66.4062
+M31.7812 74.2188
+Q44.0469 74.2188 50.5156 64.5156
+Q56.9844 54.8281 56.9844 36.375
+Q56.9844 17.9688 50.5156 8.26562
+Q44.0469 -1.42188 31.7812 -1.42188
+Q19.5312 -1.42188 13.0625 8.26562
+Q6.59375 17.9688 6.59375 36.375
+Q6.59375 54.8281 13.0625 64.5156
+Q19.5312 74.2188 31.7812 74.2188" id="DejaVuSans-30"/>
+     </defs>
+     <g transform="translate(100.763444968 257.256022105)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-2212"/>
+      <use x="83.7890625" xlink:href="#DejaVuSans-31"/>
+      <use x="147.412109375" xlink:href="#DejaVuSans-2e"/>
+      <use x="179.19921875" xlink:href="#DejaVuSans-30"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_3">
+    <g id="line2d_4">
+     <path d="
+M155.559 242.494
+L151.376 244.364" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_3">
+     <!-- −0.5 -->
+     <g transform="translate(133.659222042 262.694742024)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-2212"/>
+      <use x="83.7890625" xlink:href="#DejaVuSans-30"/>
+      <use x="147.412109375" xlink:href="#DejaVuSans-2e"/>
+      <use x="179.19921875" xlink:href="#DejaVuSans-35"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_4">
+    <g id="line2d_5">
+     <path d="
+M188.697 247.911
+L184.554 249.802" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_4">
+     <!-- 0.0 -->
+     <g transform="translate(170.693689643 268.192876495)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-30"/>
+      <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+      <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_5">
+    <g id="line2d_6">
+     <path d="
+M222.199 253.389
+L218.097 255.3" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_5">
+     <!-- 0.5 -->
+     <g transform="translate(204.311812529 273.751404466)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-30"/>
+      <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+      <use x="95.41015625" xlink:href="#DejaVuSans-35"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_6">
+    <g id="line2d_7">
+     <path d="
+M256.069 258.926
+L252.01 260.859" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_6">
+     <!-- 1.0 -->
+     <g transform="translate(238.310248338 279.371326507)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-31"/>
+      <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+      <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_7">
+    <g id="line2d_8">
+     <path d="
+M290.315 264.525
+L286.299 266.479" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_7">
+     <!-- 1.5 -->
+     <g transform="translate(272.674851207 285.053665415)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-31"/>
+      <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+      <use x="95.41015625" xlink:href="#DejaVuSans-35"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_8">
+    <g id="line2d_9">
+     <path d="
+M324.943 270.187
+L320.971 272.163" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_8">
+     <!-- 2.0 -->
+     <defs>
+      <path d="
+M19.1875 8.29688
+L53.6094 8.29688
+L53.6094 0
+L7.32812 0
+L7.32812 8.29688
+Q12.9375 14.1094 22.625 23.8906
+Q32.3281 33.6875 34.8125 36.5312
+Q39.5469 41.8438 41.4219 45.5312
+Q43.3125 49.2188 43.3125 52.7812
+Q43.3125 58.5938 39.2344 62.25
+Q35.1562 65.9219 28.6094 65.9219
+Q23.9688 65.9219 18.8125 64.3125
+Q13.6719 62.7031 7.8125 59.4219
+L7.8125 69.3906
+Q13.7656 71.7812 18.9375 73
+Q24.125 74.2188 28.4219 74.2188
+Q39.75 74.2188 46.4844 68.5469
+Q53.2188 62.8906 53.2188 53.4219
+Q53.2188 48.9219 51.5312 44.8906
+Q49.8594 40.875 45.4062 35.4062
+Q44.1875 33.9844 37.6406 27.2188
+Q31.1094 20.4531 19.1875 8.29688" id="DejaVuSans-32"/>
+     </defs>
+     <g transform="translate(307.029894268 290.799466834)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-32"/>
+      <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+      <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_9">
+    <g id="line2d_10">
+     <path d="
+M359.959 275.912
+L356.033 277.91" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_9">
+     <!-- 2.5 -->
+     <g transform="translate(342.166198515 296.609799893)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-32"/>
+      <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+      <use x="95.41015625" xlink:href="#DejaVuSans-35"/>
+     </g>
+    </g>
+   </g>
+  </g>
+  <g id="axis3d_2">
+   <g id="line2d_11">
+    <path d="
+M515.46 200.427
+L364.529 277.539" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:0.75;"/>
+   </g>
+   <g id="Line3DCollection_2">
+    <defs>
+     <path d="
+M75.3802 -214.303
+L87.1044 -72.357
+L367.787 -26.5259" id="C1_0_5afe5102a5"/>
+     <path d="
+M97.6783 -222.431
+L108.157 -81.3743
+L387.115 -36.4007" id="C1_1_89af3d4b57"/>
+     <path d="
+M119.549 -230.403
+L128.826 -90.2273
+L406.075 -46.0874" id="C1_2_3eadfcaf9d"/>
+     <path d="
+M141.004 -238.224
+L149.122 -98.9207
+L424.677 -55.5915" id="C1_3_1f3fae6b69"/>
+     <path d="
+M162.056 -245.897
+L169.055 -107.459
+L442.932 -64.918" id="C1_4_95eee7bb64"/>
+     <path d="
+M182.715 -253.428
+L188.635 -115.845
+L460.849 -74.0718" id="C1_5_3144e0e933"/>
+     <path d="
+M202.992 -260.819
+L207.871 -124.084
+L478.437 -83.0577" id="C1_6_7cece78df1"/>
+     <path d="
+M222.899 -268.076
+L226.772 -132.18
+L495.706 -91.8803" id="C1_7_3accc77aba"/>
+     <path d="
+M242.444 -275.2
+L245.347 -140.136
+L512.664 -100.544" id="C1_8_056f02ce11"/>
+    </defs>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C1_0_5afe5102a5" y="302.4"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C1_1_89af3d4b57" y="302.4"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C1_2_3eadfcaf9d" y="302.4"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C1_3_1f3fae6b69" y="302.4"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C1_4_95eee7bb64" y="302.4"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C1_5_3144e0e933" y="302.4"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C1_6_7cece78df1" y="302.4"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C1_7_3accc77aba" y="302.4"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C1_8_056f02ce11" y="302.4"/>
+   </g>
+   <g id="xtick_10">
+    <g id="line2d_12">
+     <path d="
+M365.437 275.49
+L372.491 276.642" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_10">
+     <!-- −2.5 -->
+     <g transform="translate(372.86140677 293.907849696)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-2212"/>
+      <use x="83.7890625" xlink:href="#DejaVuSans-32"/>
+      <use x="147.412109375" xlink:href="#DejaVuSans-2e"/>
+      <use x="179.19921875" xlink:href="#DejaVuSans-35"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_11">
+    <g id="line2d_13">
+     <path d="
+M384.781 265.623
+L391.788 266.753" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_11">
+     <!-- −2.0 -->
+     <g transform="translate(391.920953358 283.936767278)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-2212"/>
+      <use x="83.7890625" xlink:href="#DejaVuSans-32"/>
+      <use x="147.412109375" xlink:href="#DejaVuSans-2e"/>
+      <use x="179.19921875" xlink:href="#DejaVuSans-30"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_12">
+    <g id="line2d_14">
+     <path d="
+M403.756 255.943
+L410.717 257.052" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_12">
+     <!-- −1.5 -->
+     <g transform="translate(410.825121557 274.155464743)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-2212"/>
+      <use x="83.7890625" xlink:href="#DejaVuSans-31"/>
+      <use x="147.412109375" xlink:href="#DejaVuSans-2e"/>
+      <use x="179.19921875" xlink:href="#DejaVuSans-35"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_13">
+    <g id="line2d_15">
+     <path d="
+M422.374 246.446
+L429.289 247.534" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_13">
+     <!-- −1.0 -->
+     <g transform="translate(429.165476743 264.558575038)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-2212"/>
+      <use x="83.7890625" xlink:href="#DejaVuSans-31"/>
+      <use x="147.412109375" xlink:href="#DejaVuSans-2e"/>
+      <use x="179.19921875" xlink:href="#DejaVuSans-30"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_14">
+    <g id="line2d_16">
+     <path d="
+M440.643 237.127
+L447.514 238.194" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_14">
+     <!-- −0.5 -->
+     <g transform="translate(447.37069896 255.140931597)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-2212"/>
+      <use x="83.7890625" xlink:href="#DejaVuSans-30"/>
+      <use x="147.412109375" xlink:href="#DejaVuSans-2e"/>
+      <use x="179.19921875" xlink:href="#DejaVuSans-35"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_15">
+    <g id="line2d_17">
+     <path d="
+M458.575 227.979
+L465.402 229.027" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_15">
+     <!-- 0.0 -->
+     <g transform="translate(469.021444496 245.897559065)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-30"/>
+      <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+      <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_16">
+    <g id="line2d_18">
+     <path d="
+M476.178 219
+L482.961 220.028" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_16">
+     <!-- 0.5 -->
+     <g transform="translate(486.565987728 236.823664534)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-30"/>
+      <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+      <use x="95.41015625" xlink:href="#DejaVuSans-35"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_17">
+    <g id="line2d_19">
+     <path d="
+M493.461 210.183
+L500.2 211.193" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_17">
+     <!-- 1.0 -->
+     <g transform="translate(503.803830805 227.914629259)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-31"/>
+      <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+      <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_18">
+    <g id="line2d_20">
+     <path d="
+M510.433 201.526
+L517.129 202.517" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_18">
+     <!-- 1.5 -->
+     <g transform="translate(520.723218705 219.166000811)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-31"/>
+      <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+      <use x="95.41015625" xlink:href="#DejaVuSans-35"/>
+     </g>
+    </g>
+   </g>
+  </g>
+  <g id="axis3d_3">
+   <g id="line2d_21">
+    <path d="
+M515.46 200.427
+L526.633 61.4324" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:0.75;"/>
+   </g>
+   <g id="Line3DCollection_3">
+    <defs>
+     <path d="
+M515.673 -104.616
+L248.36 -144.021
+L83.3311 -73.5359" id="C2_0_494ff33c9b"/>
+     <path d="
+M517.043 -121.662
+L248.022 -160.597
+L81.8694 -90.9364" id="C2_1_e9f86ef2da"/>
+     <path d="
+M518.431 -138.928
+L247.681 -177.38
+L80.3881 -108.57" id="C2_2_0f0afcac06"/>
+     <path d="
+M519.837 -156.42
+L247.335 -194.373
+L78.8868 -126.441" id="C2_3_87b7ef6c69"/>
+     <path d="
+M521.262 -174.142
+L246.985 -211.579
+L77.3652 -144.555" id="C2_4_043c317ef8"/>
+     <path d="
+M522.705 -192.098
+L246.631 -229.003
+L75.8228 -162.917" id="C2_5_ec917f6553"/>
+     <path d="
+M524.167 -210.293
+L246.272 -246.649
+L74.2591 -181.532" id="C2_6_45b180271f"/>
+     <path d="
+M525.65 -228.732
+L245.908 -264.521
+L72.6737 -200.405" id="C2_7_d83b75bbb5"/>
+    </defs>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C2_0_494ff33c9b" y="302.4"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C2_1_e9f86ef2da" y="302.4"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C2_2_0f0afcac06" y="302.4"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C2_3_87b7ef6c69" y="302.4"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C2_4_043c317ef8" y="302.4"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C2_5_ec917f6553" y="302.4"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C2_6_45b180271f" y="302.4"/>
+    <use style="fill:none;stroke:#e6e6e6;" x="0.0" xlink:href="#C2_7_d83b75bbb5" y="302.4"/>
+   </g>
+   <g id="xtick_19">
+    <g id="line2d_22">
+     <path d="
+M513.442 197.455
+L520.138 198.442" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_19">
+     <!-- 0.0 -->
+     <g transform="translate(531.784915344 203.699656579)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-30"/>
+      <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+      <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_20">
+    <g id="line2d_23">
+     <path d="
+M514.798 180.413
+L521.538 181.389" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_20">
+     <!-- 0.2 -->
+     <g transform="translate(533.471897915 186.673781813)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-30"/>
+      <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+      <use x="95.41015625" xlink:href="#DejaVuSans-32"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_21">
+    <g id="line2d_24">
+     <path d="
+M516.171 163.151
+L522.956 164.114" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_21">
+     <!-- 0.4 -->
+     <defs>
+      <path d="
+M37.7969 64.3125
+L12.8906 25.3906
+L37.7969 25.3906
+z
+
+M35.2031 72.9062
+L47.6094 72.9062
+L47.6094 25.3906
+L58.0156 25.3906
+L58.0156 17.1875
+L47.6094 17.1875
+L47.6094 0
+L37.7969 0
+L37.7969 17.1875
+L4.89062 17.1875
+L4.89062 26.7031
+z
+" id="DejaVuSans-34"/>
+     </defs>
+     <g transform="translate(534.789470995 169.427512833)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-30"/>
+      <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+      <use x="95.41015625" xlink:href="#DejaVuSans-34"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_22">
+    <g id="line2d_25">
+     <path d="
+M517.561 145.663
+L524.393 146.614" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_22">
+     <!-- 0.6 -->
+     <defs>
+      <path d="
+M33.0156 40.375
+Q26.375 40.375 22.4844 35.8281
+Q18.6094 31.2969 18.6094 23.3906
+Q18.6094 15.5312 22.4844 10.9531
+Q26.375 6.39062 33.0156 6.39062
+Q39.6562 6.39062 43.5312 10.9531
+Q47.4062 15.5312 47.4062 23.3906
+Q47.4062 31.2969 43.5312 35.8281
+Q39.6562 40.375 33.0156 40.375
+M52.5938 71.2969
+L52.5938 62.3125
+Q48.875 64.0625 45.0938 64.9844
+Q41.3125 65.9219 37.5938 65.9219
+Q27.8281 65.9219 22.6719 59.3281
+Q17.5312 52.7344 16.7969 39.4062
+Q19.6719 43.6562 24.0156 45.9219
+Q28.375 48.1875 33.5938 48.1875
+Q44.5781 48.1875 50.9531 41.5156
+Q57.3281 34.8594 57.3281 23.3906
+Q57.3281 12.1562 50.6875 5.35938
+Q44.0469 -1.42188 33.0156 -1.42188
+Q20.3594 -1.42188 13.6719 8.26562
+Q6.98438 17.9688 6.98438 36.375
+Q6.98438 53.6562 15.1875 63.9375
+Q23.3906 74.2188 37.2031 74.2188
+Q40.9219 74.2188 44.7031 73.4844
+Q48.4844 72.75 52.5938 71.2969" id="DejaVuSans-36"/>
+     </defs>
+     <g transform="translate(536.381768673 151.956542367)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-30"/>
+      <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+      <use x="95.41015625" xlink:href="#DejaVuSans-36"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_23">
+    <g id="line2d_26">
+     <path d="
+M518.971 127.945
+L525.848 128.884" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_23">
+     <!-- 0.8 -->
+     <defs>
+      <path d="
+M31.7812 34.625
+Q24.75 34.625 20.7188 30.8594
+Q16.7031 27.0938 16.7031 20.5156
+Q16.7031 13.9219 20.7188 10.1562
+Q24.75 6.39062 31.7812 6.39062
+Q38.8125 6.39062 42.8594 10.1719
+Q46.9219 13.9688 46.9219 20.5156
+Q46.9219 27.0938 42.8906 30.8594
+Q38.875 34.625 31.7812 34.625
+M21.9219 38.8125
+Q15.5781 40.375 12.0312 44.7188
+Q8.5 49.0781 8.5 55.3281
+Q8.5 64.0625 14.7188 69.1406
+Q20.9531 74.2188 31.7812 74.2188
+Q42.6719 74.2188 48.875 69.1406
+Q55.0781 64.0625 55.0781 55.3281
+Q55.0781 49.0781 51.5312 44.7188
+Q48 40.375 41.7031 38.8125
+Q48.8281 37.1562 52.7969 32.3125
+Q56.7812 27.4844 56.7812 20.5156
+Q56.7812 9.90625 50.3125 4.23438
+Q43.8438 -1.42188 31.7812 -1.42188
+Q19.7344 -1.42188 13.25 4.23438
+Q6.78125 9.90625 6.78125 20.5156
+Q6.78125 27.4844 10.7812 32.3125
+Q14.7969 37.1562 21.9219 38.8125
+M18.3125 54.3906
+Q18.3125 48.7344 21.8438 45.5625
+Q25.3906 42.3906 31.7812 42.3906
+Q38.1406 42.3906 41.7188 45.5625
+Q45.3125 48.7344 45.3125 54.3906
+Q45.3125 60.0625 41.7188 63.2344
+Q38.1406 66.4062 31.7812 66.4062
+Q25.3906 66.4062 21.8438 63.2344
+Q18.3125 60.0625 18.3125 54.3906" id="DejaVuSans-38"/>
+     </defs>
+     <g transform="translate(537.987466361 134.256450171)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-30"/>
+      <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+      <use x="95.41015625" xlink:href="#DejaVuSans-38"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_24">
+    <g id="line2d_27">
+     <path d="
+M520.398 109.994
+L527.323 110.919" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_24">
+     <!-- 1.0 -->
+     <g transform="translate(539.796031128 116.322699293)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-31"/>
+      <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+      <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_25">
+    <g id="line2d_28">
+     <path d="
+M521.845 91.803
+L528.817 92.7152" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_25">
+     <!-- 1.2 -->
+     <g transform="translate(541.585222046 98.1506322046)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-31"/>
+      <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+      <use x="95.41015625" xlink:href="#DejaVuSans-32"/>
+     </g>
+    </g>
+   </g>
+   <g id="xtick_26">
+    <g id="line2d_29">
+     <path d="
+M523.311 73.3687
+L530.332 74.2669" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+    </g>
+    <g id="text_26">
+     <!-- 1.4 -->
+     <g transform="translate(543.007028049 79.7354667632)scale(0.1 -0.1)">
+      <use xlink:href="#DejaVuSans-31"/>
+      <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+      <use x="95.41015625" xlink:href="#DejaVuSans-34"/>
+     </g>
+    </g>
+   </g>
+  </g>
+  <g id="axes_1">
+   <g id="Poly3DCollection_1">
+    <defs>
+     <path d="
+M297.475 -136.646
+L297.63 -122.324
+L273.512 -121.979
+L273.587 -136.31
+L297.475 -136.646
+z
+" id="C3_0_4c4e67a7e1"/>
+     <path d="
+M320.519 -134.983
+L320.895 -120.618
+L297.63 -122.324
+L297.475 -136.646
+L320.519 -134.983
+z
+" id="C3_1_4d89fb535b"/>
+     <path d="
+M273.587 -136.31
+L273.512 -121.979
+L251.004 -119.617
+L251.293 -134.007
+L273.587 -136.31
+z
+" id="C3_2_7f0684c91a"/>
+     <path d="
+M340.349 -131.481
+L340.917 -117.027
+L320.895 -120.618
+L320.519 -134.983
+L340.349 -131.481
+z
+" id="C3_3_94f01bb1d2"/>
+     <path d="
+M251.293 -134.007
+L251.004 -119.617
+L232.432 -115.466
+L232.9 -129.959
+L251.293 -134.007
+z
+" id="C3_4_1fe302cc5a"/>
+     <path d="
+M297.072 -150.13
+L297.475 -136.646
+L273.587 -136.31
+L274.135 -149.812
+L297.072 -150.13
+z
+" id="C3_5_19ab7b6503"/>
+     <path d="
+M319.196 -148.557
+L320.519 -134.983
+L297.475 -136.646
+L297.072 -150.13
+L319.196 -148.557
+z
+" id="C3_6_f6bc4dc6a1"/>
+     <path d="
+M274.135 -149.812
+L273.587 -136.31
+L251.293 -134.007
+L252.733 -147.633
+L274.135 -149.812
+z
+" id="C3_7_3da93bfd4a"/>
+     <path d="
+M354.871 -126.482
+L355.583 -111.901
+L340.917 -117.027
+L340.349 -131.481
+L354.871 -126.482
+z
+" id="C3_8_5c3cb1b862"/>
+     <path d="
+M232.9 -129.959
+L232.432 -115.466
+L219.784 -109.936
+L220.376 -124.566
+L232.9 -129.959
+z
+" id="C3_9_c723524910"/>
+     <path d="
+M338.227 -145.244
+L340.349 -131.481
+L320.519 -134.983
+L319.196 -148.557
+L338.227 -145.244
+z
+" id="C3_a_4294cc16bf"/>
+     <path d="
+M252.733 -147.633
+L251.293 -134.007
+L232.9 -129.959
+L235.083 -143.805
+L252.733 -147.633
+z
+" id="C3_b_bdeb310e31"/>
+     <path d="
+M296.428 -162.36
+L297.072 -150.13
+L274.135 -149.812
+L275.15 -162.069
+L296.428 -162.36
+z
+" id="C3_c_cc9b38533a"/>
+     <path d="
+M316.948 -160.92
+L319.196 -148.557
+L297.072 -150.13
+L296.428 -162.36
+L316.948 -160.92
+z
+" id="C3_d_9cebfe2819"/>
+     <path d="
+M275.15 -162.069
+L274.135 -149.812
+L252.733 -147.633
+L255.302 -160.075
+L275.15 -162.069
+z
+" id="C3_e_a4991c4852"/>
+     <path d="
+M352.154 -140.518
+L354.871 -126.482
+L340.349 -131.481
+L338.227 -145.244
+L352.154 -140.518
+z
+" id="C3_f_66b33b0445"/>
+     <path d="
+M362.471 -120.491
+L363.261 -105.756
+L355.583 -111.901
+L354.871 -126.482
+L362.471 -120.491
+z
+" id="C3_10_2c2322bfe3"/>
+     <path d="
+M235.083 -143.805
+L232.9 -129.959
+L220.376 -124.566
+L223.077 -138.708
+L235.083 -143.805
+z
+" id="C3_11_72ae4585fe"/>
+     <path d="
+M220.376 -124.566
+L219.784 -109.936
+L214.503 -103.589
+L215.15 -118.379
+L220.376 -124.566
+z
+" id="C3_12_e22b9b8ba8"/>
+     <path d="
+M334.587 -157.89
+L338.227 -145.244
+L319.196 -148.557
+L316.948 -160.92
+L334.587 -157.89
+z
+" id="C3_13_3d1710e470"/>
+     <path d="
+M255.302 -160.075
+L252.733 -147.633
+L235.083 -143.805
+L238.948 -156.575
+L255.302 -160.075
+z
+" id="C3_14_aee0e4473c"/>
+     <path d="
+M295.557 -172.941
+L296.428 -162.36
+L275.15 -162.069
+L276.61 -172.685
+L295.557 -172.941
+z
+" id="C3_15_c6a22bfef6"/>
+     <path d="
+M313.824 -171.675
+L316.948 -160.92
+L296.428 -162.36
+L295.557 -172.941
+L313.824 -171.675
+z
+" id="C3_16_356f50c71b"/>
+     <path d="
+M276.61 -172.685
+L275.15 -162.069
+L255.302 -160.075
+L258.944 -170.932
+L276.61 -172.685
+z
+" id="C3_17_67960cdce4"/>
+     <path d="
+M359.429 -134.857
+L362.471 -120.491
+L354.871 -126.482
+L352.154 -140.518
+L359.429 -134.857
+z
+" id="C3_18_262d4ca1d9"/>
+     <path d="
+M347.479 -153.571
+L352.154 -140.518
+L338.227 -145.244
+L334.587 -157.89
+L347.479 -153.571
+z
+" id="C3_19_573acdb4fc"/>
+     <path d="
+M238.948 -156.575
+L235.083 -143.805
+L223.077 -138.708
+L227.84 -151.916
+L238.948 -156.575
+z
+" id="C3_1a_4fc4e34f5f"/>
+     <path d="
+M223.077 -138.708
+L220.376 -124.566
+L215.15 -118.379
+L218.08 -132.861
+L223.077 -138.708
+z
+" id="C3_1b_ad486f43a0"/>
+     <path d="
+M362.201 -114.132
+L362.994 -99.2334
+L363.261 -105.756
+L362.471 -120.491
+L362.201 -114.132
+z
+" id="C3_1c_b407a44d12"/>
+     <path d="
+M215.15 -118.379
+L214.503 -103.589
+L217.305 -97.0971
+L217.929 -112.05
+L215.15 -118.379
+z
+" id="C3_1d_e88119ab8c"/>
+     <path d="
+M329.514 -169.011
+L334.587 -157.89
+L316.948 -160.92
+L313.824 -171.675
+L329.514 -169.011
+z
+" id="C3_1e_eeba54dc57"/>
+     <path d="
+M258.944 -170.932
+L255.302 -160.075
+L238.948 -156.575
+L244.404 -167.854
+L258.944 -170.932
+z
+" id="C3_1f_e966ea828b"/>
+     <path d="
+M294.481 -181.515
+L295.557 -172.941
+L276.61 -172.685
+L278.479 -181.301
+L294.481 -181.515
+z
+" id="C3_20_709f9b4c5f"/>
+     <path d="
+M354.193 -148.4
+L359.429 -134.857
+L352.154 -140.518
+L347.479 -153.571
+L354.193 -148.4
+z
+" id="C3_21_1dbb7f5eea"/>
+     <path d="
+M340.959 -165.216
+L347.479 -153.571
+L334.587 -157.89
+L329.514 -169.011
+L340.959 -165.216
+z
+" id="C3_22_9b3aa8d18f"/>
+     <path d="
+M309.906 -180.456
+L313.824 -171.675
+L295.557 -172.941
+L294.481 -181.515
+L309.906 -180.456
+z
+" id="C3_23_663ca4d8fa"/>
+     <path d="
+M278.479 -181.301
+L276.61 -172.685
+L258.944 -170.932
+L263.567 -179.835
+L278.479 -181.301
+z
+" id="C3_24_4a91fcb90d"/>
+     <path d="
+M227.84 -151.916
+L223.077 -138.708
+L218.08 -132.861
+L223.239 -146.579
+L227.84 -151.916
+z
+" id="C3_25_a8f7045380"/>
+     <path d="
+M359.15 -128.851
+L362.201 -114.132
+L362.471 -120.491
+L359.429 -134.857
+L359.15 -128.851
+z
+" id="C3_26_5216231f6a"/>
+     <path d="
+M244.404 -167.854
+L238.948 -156.575
+L227.84 -151.916
+L234.551 -163.764
+L244.404 -167.854
+z
+" id="C3_27_028ad7c157"/>
+     <path d="
+M218.08 -132.861
+L215.15 -118.379
+L217.929 -112.05
+L220.764 -126.885
+L218.08 -132.861
+z
+" id="C3_28_a894b71143"/>
+     <path d="
+M353.935 -108.096
+L354.652 -93.0408
+L362.994 -99.2334
+L362.201 -114.132
+L353.935 -108.096
+z
+" id="C3_29_9f4e3d53f4"/>
+     <path d="
+M323.138 -178.23
+L329.514 -169.011
+L313.824 -171.675
+L309.906 -180.456
+L323.138 -178.23
+z
+" id="C3_2a_2e5f994285"/>
+     <path d="
+M217.929 -112.05
+L217.305 -97.0971
+L228.04 -91.1724
+L228.563 -106.275
+L217.929 -112.05
+z
+" id="C3_2b_ca0f25b14a"/>
+     <path d="
+M263.567 -179.835
+L258.944 -170.932
+L244.404 -167.854
+L251.311 -177.265
+L263.567 -179.835
+z
+" id="C3_2c_51a16e8514"/>
+     <path d="
+M346.894 -160.679
+L354.193 -148.4
+L347.479 -153.571
+L340.959 -165.216
+L346.894 -160.679
+z
+" id="C3_2d_6962a141d8"/>
+     <path d="
+M332.769 -175.063
+L340.959 -165.216
+L329.514 -169.011
+L323.138 -178.23
+L332.769 -175.063
+z
+" id="C3_2e_0cfcf356ae"/>
+     <path d="
+M293.231 -187.773
+L294.481 -181.515
+L278.479 -181.301
+L280.706 -187.607
+L293.231 -187.773
+z
+" id="C3_2f_52ccb19d22"/>
+     <path d="
+M234.551 -163.764
+L227.84 -151.916
+L223.239 -146.579
+L230.498 -159.082
+L234.551 -163.764
+z
+" id="C3_30_6998130303"/>
+     <path d="
+M353.903 -142.92
+L359.15 -128.851
+L359.429 -134.857
+L354.193 -148.4
+L353.903 -142.92
+z
+" id="C3_31_3ef49c4e07"/>
+     <path d="
+M251.311 -177.265
+L244.404 -167.854
+L234.551 -163.764
+L243.029 -173.852
+L251.311 -177.265
+z
+" id="C3_32_9a128eb9cf"/>
+     <path d="
+M305.3 -186.951
+L309.906 -180.456
+L294.481 -181.515
+L293.231 -187.773
+L305.3 -186.951
+z
+" id="C3_33_c048ef821a"/>
+     <path d="
+M280.706 -187.607
+L278.479 -181.301
+L263.567 -179.835
+L269.041 -186.468
+L280.706 -187.607
+z
+" id="C3_34_8c7740a376"/>
+     <path d="
+M223.239 -146.579
+L218.08 -132.861
+L220.764 -126.885
+L225.756 -141.127
+L223.239 -146.579
+z
+" id="C3_35_ea110442f2"/>
+     <path d="
+M351.204 -123.153
+L353.935 -108.096
+L362.201 -114.132
+L359.15 -128.851
+L351.204 -123.153
+z
+" id="C3_36_c3f5b6566f"/>
+     <path d="
+M338.446 -103.062
+L339.013 -87.8758
+L354.652 -93.0408
+L353.935 -108.096
+L338.446 -103.062
+z
+" id="C3_37_7ca09b95fc"/>
+     <path d="
+M220.764 -126.885
+L217.929 -112.05
+L228.563 -106.275
+L230.978 -121.434
+L220.764 -126.885
+z
+" id="C3_38_418ddb86c6"/>
+     <path d="
+M315.64 -185.223
+L323.138 -178.23
+L309.906 -180.456
+L305.3 -186.951
+L315.64 -185.223
+z
+" id="C3_39_f84d30c5b3"/>
+     <path d="
+M228.563 -106.275
+L228.04 -91.1724
+L245.647 -86.491
+L245.999 -101.712
+L228.563 -106.275
+z
+" id="C3_3a_7b8bc2ac73"/>
+     <path d="
+M269.041 -186.468
+L263.567 -179.835
+L251.311 -177.265
+L259.471 -184.474
+L269.041 -186.468
+z
+" id="C3_3b_5478815331"/>
+     <path d="
+M337.736 -171.281
+L346.894 -160.679
+L340.959 -165.216
+L332.769 -175.063
+L337.736 -171.281
+z
+" id="C3_3c_bf4794e4d0"/>
+     <path d="
+M346.598 -155.877
+L353.903 -142.92
+L354.193 -148.4
+L346.894 -160.679
+L346.598 -155.877
+z
+" id="C3_3d_b6feb8b96b"/>
+     <path d="
+M243.029 -173.852
+L234.551 -163.764
+L230.498 -159.082
+L239.651 -169.952
+L243.029 -173.852
+z
+" id="C3_3e_e3d6a284b9"/>
+     <path d="
+M323.145 -182.767
+L332.769 -175.063
+L323.138 -178.23
+L315.64 -185.223
+L323.145 -182.767
+z
+" id="C3_3f_59c49a3c10"/>
+     <path d="
+M259.471 -184.474
+L251.311 -177.265
+L243.029 -173.852
+L253.026 -181.829
+L259.471 -184.474
+z
+" id="C3_40_0e736086af"/>
+     <path d="
+M230.498 -159.082
+L223.239 -146.579
+L225.756 -141.127
+L232.772 -154.307
+L230.498 -159.082
+z
+" id="C3_41_d3942814d9"/>
+     <path d="
+M291.843 -191.472
+L293.231 -187.773
+L280.706 -187.607
+L283.227 -191.358
+L291.843 -191.472
+z
+" id="C3_42_e3a71ecdc7"/>
+     <path d="
+M346.518 -137.726
+L351.204 -123.153
+L359.15 -128.851
+L353.903 -142.92
+L346.518 -137.726
+z
+" id="C3_43_58d67724b2"/>
+     <path d="
+M317.38 -99.6159
+L317.738 -84.3402
+L339.013 -87.8758
+L338.446 -103.062
+L317.38 -99.6159
+z
+" id="C3_44_a38a3cd985"/>
+     <path d="
+M300.143 -190.908
+L305.3 -186.951
+L293.231 -187.773
+L291.843 -191.472
+L300.143 -190.908
+z
+" id="C3_45_98445782f9"/>
+     <path d="
+M283.227 -191.358
+L280.706 -187.607
+L269.041 -186.468
+L275.208 -190.578
+L283.227 -191.358
+z
+" id="C3_46_85f88ed662"/>
+     <path d="
+M245.999 -101.712
+L245.647 -86.491
+L268.217 -83.6032
+L268.347 -98.8977
+L245.999 -101.712
+z
+" id="C3_47_da35ce48d6"/>
+     <path d="
+M225.756 -141.127
+L220.764 -126.885
+L230.978 -121.434
+L235.236 -136.16
+L225.756 -141.127
+z
+" id="C3_48_efb96c43ee"/>
+     <path d="
+M336.341 -118.403
+L338.446 -103.062
+L353.935 -108.096
+L351.204 -123.153
+L336.341 -118.403
+z
+" id="C3_49_083a16f269"/>
+     <path d="
+M230.978 -121.434
+L228.563 -106.275
+L245.999 -101.712
+L247.706 -117.13
+L230.978 -121.434
+z
+" id="C3_4a_5736819ca1"/>
+     <path d="
+M307.243 -189.726
+L315.64 -185.223
+L305.3 -186.951
+L300.143 -190.908
+L307.243 -189.726
+z
+" id="C3_4b_e18b7fb6a9"/>
+     <path d="
+M275.208 -190.578
+L269.041 -186.468
+L259.471 -184.474
+L268.641 -189.214
+L275.208 -190.578
+z
+" id="C3_4c_602f20b4c8"/>
+     <path d="
+M293.087 -98.1696
+L293.204 -82.856
+L317.738 -84.3402
+L317.38 -99.6159
+L293.087 -98.1696
+z
+" id="C3_4d_81c9019477"/>
+     <path d="
+M326.991 -179.841
+L337.736 -171.281
+L332.769 -175.063
+L323.145 -182.767
+L326.991 -179.841
+z
+" id="C3_4e_3434791ce4"/>
+     <path d="
+M268.347 -98.8977
+L268.217 -83.6032
+L293.204 -82.856
+L293.087 -98.1696
+L268.347 -98.8977
+z
+" id="C3_4f_ac4e967db3"/>
+     <path d="
+M337.444 -167.286
+L346.598 -155.877
+L346.894 -160.679
+L337.736 -171.281
+L337.444 -167.286
+z
+" id="C3_50_975682b30c"/>
+     <path d="
+M253.026 -181.829
+L243.029 -173.852
+L239.651 -169.952
+L250.424 -178.813
+L253.026 -181.829
+z
+" id="C3_51_60cd5caff9"/>
+     <path d="
+M312.381 -188.048
+L323.145 -182.767
+L315.64 -185.223
+L307.243 -189.726
+L312.381 -188.048
+z
+" id="C3_52_533e6ec568"/>
+     <path d="
+M239.651 -169.952
+L230.498 -159.082
+L232.772 -154.307
+L241.606 -165.981
+L239.651 -169.952
+z
+" id="C3_53_85cda3472e"/>
+     <path d="
+M268.641 -189.214
+L259.471 -184.474
+L253.026 -181.829
+L264.235 -187.409
+L268.641 -189.214
+z
+" id="C3_54_92cb6d4224"/>
+     <path d="
+M340.004 -151.331
+L346.518 -137.726
+L353.903 -142.92
+L346.598 -155.877
+L340.004 -151.331
+z
+" id="C3_55_81c0aadf5f"/>
+     <path d="
+M232.772 -154.307
+L225.756 -141.127
+L235.236 -136.16
+L241.22 -149.962
+L232.772 -154.307
+z
+" id="C3_56_69df4b9cc2"/>
+     <path d="
+M316.138 -115.153
+L317.38 -99.6159
+L338.446 -103.062
+L336.341 -118.403
+L316.138 -115.153
+z
+" id="C3_57_514e30aebf"/>
+     <path d="
+M290.36 -192.446
+L291.843 -191.472
+L283.227 -191.358
+L285.964 -192.388
+L290.36 -192.446
+z
+" id="C3_58_40226deb9f"/>
+     <path d="
+M332.743 -133.399
+L336.341 -118.403
+L351.204 -123.153
+L346.518 -137.726
+L332.743 -133.399
+z
+" id="C3_59_69fa49ff49"/>
+     <path d="
+M294.594 -192.159
+L300.143 -190.908
+L291.843 -191.472
+L290.36 -192.446
+L294.594 -192.159
+z
+" id="C3_5a_ae4c77ca3e"/>
+     <path d="
+M247.706 -117.13
+L245.999 -101.712
+L268.347 -98.8977
+L269.134 -114.476
+L247.706 -117.13
+z
+" id="C3_5b_50d0ad521a"/>
+     <path d="
+M285.964 -192.388
+L283.227 -191.358
+L275.208 -190.578
+L281.875 -191.991
+L285.964 -192.388
+z
+" id="C3_5c_39aee447dd"/>
+     <path d="
+M235.236 -136.16
+L230.978 -121.434
+L247.706 -117.13
+L250.731 -132.24
+L235.236 -136.16
+z
+" id="C3_5d_e5929f6df0"/>
+     <path d="
+M314.994 -186.053
+L326.991 -179.841
+L323.145 -182.767
+L312.381 -188.048
+L314.994 -186.053
+z
+" id="C3_5e_74f2dd295a"/>
+     <path d="
+M298.21 -191.557
+L307.243 -189.726
+L300.143 -190.908
+L294.594 -192.159
+L298.21 -191.557
+z
+" id="C3_5f_b8efc6c68e"/>
+     <path d="
+M326.726 -176.754
+L337.444 -167.286
+L337.736 -171.281
+L326.991 -179.841
+L326.726 -176.754
+z
+" id="C3_60_b1686911b5"/>
+     <path d="
+M281.875 -191.991
+L275.208 -190.578
+L268.641 -189.214
+L278.534 -191.297
+L281.875 -191.991
+z
+" id="C3_61_b2ea0945c8"/>
+     <path d="
+M264.235 -187.409
+L253.026 -181.829
+L250.424 -178.813
+L262.478 -185.353
+L264.235 -187.409
+z
+" id="C3_62_8797684e6b"/>
+     <path d="
+M250.424 -178.813
+L239.651 -169.952
+L241.606 -165.981
+L251.986 -175.748
+L250.424 -178.813
+z
+" id="C3_63_9b736e6615"/>
+     <path d="
+M292.85 -113.789
+L293.087 -98.1696
+L317.38 -99.6159
+L316.138 -115.153
+L292.85 -113.789
+z
+" id="C3_64_6eea4782c4"/>
+     <path d="
+M300.817 -190.705
+L312.381 -188.048
+L307.243 -189.726
+L298.21 -191.557
+L300.817 -190.705
+z
+" id="C3_65_3e635deb15"/>
+     <path d="
+M269.134 -114.476
+L268.347 -98.8977
+L293.087 -98.1696
+L292.85 -113.789
+L269.134 -114.476
+z
+" id="C3_66_204f2810f3"/>
+     <path d="
+M331.858 -163.509
+L340.004 -151.331
+L346.598 -155.877
+L337.444 -167.286
+L331.858 -163.509
+z
+" id="C3_67_2aacad9fad"/>
+     <path d="
+M278.534 -191.297
+L268.641 -189.214
+L264.235 -187.409
+L276.301 -190.38
+L278.534 -191.297
+z
+" id="C3_68_d62a3abbd2"/>
+     <path d="
+M241.606 -165.981
+L232.772 -154.307
+L241.22 -149.962
+L248.749 -162.373
+L241.606 -165.981
+z
+" id="C3_69_1edd0d8840"/>
+     <path d="
+M302.133 -189.693
+L314.994 -186.053
+L312.381 -188.048
+L300.817 -190.705
+L302.133 -189.693
+z
+" id="C3_6a_f196b45eca"/>
+     <path d="
+M314.784 -183.953
+L326.726 -176.754
+L326.991 -179.841
+L314.994 -186.053
+L314.784 -183.953
+z
+" id="C3_6b_7987c3485a"/>
+     <path d="
+M327.754 -147.55
+L332.743 -133.399
+L346.518 -137.726
+L340.004 -151.331
+L327.754 -147.55
+z
+" id="C3_6c_799a5eae6b"/>
+     <path d="
+M276.301 -190.38
+L264.235 -187.409
+L262.478 -185.353
+L275.422 -189.339
+L276.301 -190.38
+z
+" id="C3_6d_d7642355b4"/>
+     <path d="
+M314.042 -130.441
+L316.138 -115.153
+L336.341 -118.403
+L332.743 -133.399
+L314.042 -130.441
+z
+" id="C3_6e_380a0eb2a9"/>
+     <path d="
+M288.83 -190.623
+L290.36 -192.446
+L285.964 -192.388
+L288.83 -190.623
+z
+" id="C3_6f_06677be795"/>
+     <path d="
+M262.478 -185.353
+L250.424 -178.813
+L251.986 -175.748
+L263.577 -183.269
+L262.478 -185.353
+z
+" id="C3_70_98958ec357"/>
+     <path d="
+M288.83 -190.623
+L294.594 -192.159
+L290.36 -192.446
+L288.83 -190.623
+z
+" id="C3_71_e77f05ee97"/>
+     <path d="
+M288.83 -190.623
+L285.964 -192.388
+L281.875 -191.991
+L288.83 -190.623
+z
+" id="C3_72_3833f84e20"/>
+     <path d="
+M241.22 -149.962
+L235.236 -136.16
+L250.731 -132.24
+L254.989 -146.537
+L241.22 -149.962
+z
+" id="C3_73_4541b95066"/>
+     <path d="
+M288.83 -190.623
+L298.21 -191.557
+L294.594 -192.159
+L288.83 -190.623
+z
+" id="C3_74_058e15b53b"/>
+     <path d="
+M250.731 -132.24
+L247.706 -117.13
+L269.134 -114.476
+L270.561 -129.825
+L250.731 -132.24
+z
+" id="C3_75_67489cfb14"/>
+     <path d="
+M288.83 -190.623
+L281.875 -191.991
+L278.534 -191.297
+L288.83 -190.623
+z
+" id="C3_76_b209b776dd"/>
+     <path d="
+M288.83 -190.623
+L300.817 -190.705
+L298.21 -191.557
+L288.83 -190.623
+z
+" id="C3_77_349bc305d2"/>
+     <path d="
+M322.337 -173.843
+L331.858 -163.509
+L337.444 -167.286
+L326.726 -176.754
+L322.337 -173.843
+z
+" id="C3_78_11f1982bcd"/>
+     <path d="
+M288.83 -190.623
+L278.534 -191.297
+L276.301 -190.38
+L288.83 -190.623
+z
+" id="C3_79_ded2d13f47"/>
+     <path d="
+M302.01 -188.63
+L314.784 -183.953
+L314.994 -186.053
+L302.133 -189.693
+L302.01 -188.63
+z
+" id="C3_7a_7bfc051170"/>
+     <path d="
+M288.83 -190.623
+L302.133 -189.693
+L300.817 -190.705
+L288.83 -190.623
+z
+" id="C3_7b_7fce1459b4"/>
+     <path d="
+M251.986 -175.748
+L241.606 -165.981
+L248.749 -162.373
+L257.584 -172.968
+L251.986 -175.748
+z
+" id="C3_7c_a6c0c828fe"/>
+     <path d="
+M288.83 -190.623
+L276.301 -190.38
+L275.422 -189.339
+L288.83 -190.623
+z
+" id="C3_7d_3efefdebae"/>
+     <path d="
+M275.422 -189.339
+L262.478 -185.353
+L263.577 -183.269
+L275.996 -188.285
+L275.422 -189.339
+z
+" id="C3_7e_18fbc2386f"/>
+     <path d="
+M288.83 -190.623
+L302.01 -188.63
+L302.133 -189.693
+L288.83 -190.623
+z
+" id="C3_7f_07949d0c09"/>
+     <path d="
+M288.83 -190.623
+L275.422 -189.339
+L275.996 -188.285
+L288.83 -190.623
+z
+" id="C3_80_2263544b1e"/>
+     <path d="
+M292.498 -129.2
+L292.85 -113.789
+L316.138 -115.153
+L314.042 -130.441
+L292.498 -129.2
+z
+" id="C3_81_c67ed7b1cf"/>
+     <path d="
+M270.561 -129.825
+L269.134 -114.476
+L292.85 -113.789
+L292.498 -129.2
+L270.561 -129.825
+z
+" id="C3_82_5b1b1703d9"/>
+     <path d="
+M311.752 -181.977
+L322.337 -173.843
+L326.726 -176.754
+L314.784 -183.953
+L311.752 -181.977
+z
+" id="C3_83_7eb916dad4"/>
+     <path d="
+M321.528 -160.373
+L327.754 -147.55
+L340.004 -151.331
+L331.858 -163.509
+L321.528 -160.373
+z
+" id="C3_84_743f39689a"/>
+     <path d="
+M288.83 -190.623
+L300.457 -187.632
+L302.01 -188.63
+L288.83 -190.623
+z
+" id="C3_85_dfcafcd86b"/>
+     <path d="
+M288.83 -190.623
+L275.996 -188.285
+L277.966 -187.333
+L288.83 -190.623
+z
+" id="C3_86_cbe9adddd1"/>
+     <path d="
+M263.577 -183.269
+L251.986 -175.748
+L257.584 -172.968
+L267.432 -181.384
+L263.577 -183.269
+z
+" id="C3_87_815e569a96"/>
+     <path d="
+M300.457 -187.632
+L311.752 -181.977
+L314.784 -183.953
+L302.01 -188.63
+L300.457 -187.632
+z
+" id="C3_88_962bc11bef"/>
+     <path d="
+M248.749 -162.373
+L241.22 -149.962
+L254.989 -146.537
+L260.349 -159.533
+L248.749 -162.373
+z
+" id="C3_89_50c456e7b2"/>
+     <path d="
+M288.83 -190.623
+L297.637 -186.808
+L300.457 -187.632
+L288.83 -190.623
+z
+" id="C3_8a_8e9b19c3b6"/>
+     <path d="
+M288.83 -190.623
+L277.966 -187.333
+L281.121 -186.589
+L288.83 -190.623
+z
+" id="C3_8b_f3a72e8e39"/>
+     <path d="
+M275.996 -188.285
+L263.577 -183.269
+L267.432 -181.384
+L277.966 -187.333
+L275.996 -188.285
+z
+" id="C3_8c_1d3a5422b6"/>
+     <path d="
+M311.152 -144.966
+L314.042 -130.441
+L332.743 -133.399
+L327.754 -147.55
+L311.152 -144.966
+z
+" id="C3_8d_a01de32d2f"/>
+     <path d="
+M288.83 -190.623
+L293.857 -186.248
+L297.637 -186.808
+L288.83 -190.623
+z
+" id="C3_8e_47b874a3d3"/>
+     <path d="
+M288.83 -190.623
+L281.121 -186.589
+L285.12 -186.132
+L288.83 -190.623
+z
+" id="C3_8f_8e71a037f3"/>
+     <path d="
+M254.989 -146.537
+L250.731 -132.24
+L270.561 -129.825
+L272.587 -144.428
+L254.989 -146.537
+z
+" id="C3_90_37398fe61a"/>
+     <path d="
+M288.83 -190.623
+L289.526 -186.014
+L293.857 -186.248
+L288.83 -190.623
+z
+" id="C3_91_49e8df08bc"/>
+     <path d="
+M288.83 -190.623
+L285.12 -186.132
+L289.526 -186.014
+L288.83 -190.623
+z
+" id="C3_92_965992a07e"/>
+     <path d="
+M314.267 -171.429
+L321.528 -160.373
+L331.858 -163.509
+L322.337 -173.843
+L314.267 -171.429
+z
+" id="C3_93_514369ea95"/>
+     <path d="
+M297.637 -186.808
+L306.213 -180.341
+L311.752 -181.977
+L300.457 -187.632
+L297.637 -186.808
+z
+" id="C3_94_63922a5ba0"/>
+     <path d="
+M257.584 -172.968
+L248.749 -162.373
+L260.349 -159.533
+L266.636 -170.784
+L257.584 -172.968
+z
+" id="C3_95_1bd33d7f21"/>
+     <path d="
+M277.966 -187.333
+L267.432 -181.384
+L273.639 -179.904
+L281.121 -186.589
+L277.966 -187.333
+z
+" id="C3_96_0491c18a4e"/>
+     <path d="
+M306.213 -180.341
+L314.267 -171.429
+L322.337 -173.843
+L311.752 -181.977
+L306.213 -180.341
+z
+" id="C3_97_e3261ba7d3"/>
+     <path d="
+M267.432 -181.384
+L257.584 -172.968
+L266.636 -170.784
+L273.639 -179.904
+L267.432 -181.384
+z
+" id="C3_98_f65b1d75e7"/>
+     <path d="
+M292.043 -143.883
+L292.498 -129.2
+L314.042 -130.441
+L311.152 -144.966
+L292.043 -143.883
+z
+" id="C3_99_43f41f51fa"/>
+     <path d="
+M272.587 -144.428
+L270.561 -129.825
+L292.498 -129.2
+L292.043 -143.883
+L272.587 -144.428
+z
+" id="C3_9a_94de889d4e"/>
+     <path d="
+M293.857 -186.248
+L298.763 -179.227
+L306.213 -180.341
+L297.637 -186.808
+L293.857 -186.248
+z
+" id="C3_9b_3a3115e1de"/>
+     <path d="
+M307.56 -158.232
+L311.152 -144.966
+L327.754 -147.55
+L321.528 -160.373
+L307.56 -158.232
+z
+" id="C3_9c_f83fe83520"/>
+     <path d="
+M281.121 -186.589
+L273.639 -179.904
+L281.523 -178.996
+L285.12 -186.132
+L281.121 -186.589
+z
+" id="C3_9d_179d740d4d"/>
+     <path d="
+M260.349 -159.533
+L254.989 -146.537
+L272.587 -144.428
+L275.148 -157.786
+L260.349 -159.533
+z
+" id="C3_9e_f18e636d6f"/>
+     <path d="
+M289.526 -186.014
+L290.219 -178.762
+L298.763 -179.227
+L293.857 -186.248
+L289.526 -186.014
+z
+" id="C3_9f_b6940f40c4"/>
+     <path d="
+M285.12 -186.132
+L281.523 -178.996
+L290.219 -178.762
+L289.526 -186.014
+L285.12 -186.132
+z
+" id="C3_a0_e66d6edbf9"/>
+     <path d="
+M298.763 -179.227
+L303.384 -169.784
+L314.267 -171.429
+L306.213 -180.341
+L298.763 -179.227
+z
+" id="C3_a1_36db8986d6"/>
+     <path d="
+M303.384 -169.784
+L307.56 -158.232
+L321.528 -160.373
+L314.267 -171.429
+L303.384 -169.784
+z
+" id="C3_a2_d7b118a736"/>
+     <path d="
+M273.639 -179.904
+L266.636 -170.784
+L278.161 -169.441
+L281.523 -178.996
+L273.639 -179.904
+z
+" id="C3_a3_947052957b"/>
+     <path d="
+M266.636 -170.784
+L260.349 -159.533
+L275.148 -157.786
+L278.161 -169.441
+L266.636 -170.784
+z
+" id="C3_a4_552e2a58c1"/>
+     <path d="
+M291.499 -157.335
+L292.043 -143.883
+L311.152 -144.966
+L307.56 -158.232
+L291.499 -157.335
+z
+" id="C3_a5_c8ab7f7ca1"/>
+     <path d="
+M275.148 -157.786
+L272.587 -144.428
+L292.043 -143.883
+L291.499 -157.335
+L275.148 -157.786
+z
+" id="C3_a6_c491acb16a"/>
+     <path d="
+M290.219 -178.762
+L290.884 -169.095
+L303.384 -169.784
+L298.763 -179.227
+L290.219 -178.762
+z
+" id="C3_a7_96a153c218"/>
+     <path d="
+M281.523 -178.996
+L278.161 -169.441
+L290.884 -169.095
+L290.219 -178.762
+L281.523 -178.996
+z
+" id="C3_a8_fc017f59d6"/>
+     <path d="
+M290.884 -169.095
+L291.499 -157.335
+L307.56 -158.232
+L303.384 -169.784
+L290.884 -169.095
+z
+" id="C3_a9_dacdc5ba87"/>
+     <path d="
+M278.161 -169.441
+L275.148 -157.786
+L291.499 -157.335
+L290.884 -169.095
+L278.161 -169.441
+z
+" id="C3_aa_fd2787d743"/>
+    </defs>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#b2b2b2;stroke:#000000;" x="0.0" xlink:href="#C3_0_4c4e67a7e1" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#9e9e9e;stroke:#000000;" x="0.0" xlink:href="#C3_1_4d89fb535b" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#c6c6c6;stroke:#000000;" x="0.0" xlink:href="#C3_2_7f0684c91a" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#8e8e8e;stroke:#000000;" x="0.0" xlink:href="#C3_3_94f01bb1d2" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#dadada;stroke:#000000;" x="0.0" xlink:href="#C3_4_1fe302cc5a" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#b6b6b6;stroke:#000000;" x="0.0" xlink:href="#C3_5_19ab7b6503" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#a3a3a3;stroke:#000000;" x="0.0" xlink:href="#C3_6_f6bc4dc6a1" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#cacaca;stroke:#000000;" x="0.0" xlink:href="#C3_7_3da93bfd4a" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#848484;stroke:#000000;" x="0.0" xlink:href="#C3_8_5c3cb1b862" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#ebebeb;stroke:#000000;" x="0.0" xlink:href="#C3_9_c723524910" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#949494;stroke:#000000;" x="0.0" xlink:href="#C3_a_4294cc16bf" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#dddddd;stroke:#000000;" x="0.0" xlink:href="#C3_b_bdeb310e31" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#bababa;stroke:#000000;" x="0.0" xlink:href="#C3_c_cc9b38533a" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#a8a8a8;stroke:#000000;" x="0.0" xlink:href="#C3_d_9cebfe2819" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#cdcdcd;stroke:#000000;" x="0.0" xlink:href="#C3_e_a4991c4852" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#898989;stroke:#000000;" x="0.0" xlink:href="#C3_f_66b33b0445" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#808080;stroke:#000000;" x="0.0" xlink:href="#C3_10_2c2322bfe3" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#eeeeee;stroke:#000000;" x="0.0" xlink:href="#C3_11_72ae4585fe" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#f7f7f7;stroke:#000000;" x="0.0" xlink:href="#C3_12_e22b9b8ba8" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#9a9a9a;stroke:#000000;" x="0.0" xlink:href="#C3_13_3d1710e470" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#dfdfdf;stroke:#000000;" x="0.0" xlink:href="#C3_14_aee0e4473c" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#bfbfbf;stroke:#000000;" x="0.0" xlink:href="#C3_15_c6a22bfef6" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#afafaf;stroke:#000000;" x="0.0" xlink:href="#C3_16_356f50c71b" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#d0d0d0;stroke:#000000;" x="0.0" xlink:href="#C3_17_67960cdce4" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#858585;stroke:#000000;" x="0.0" xlink:href="#C3_18_262d4ca1d9" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#909090;stroke:#000000;" x="0.0" xlink:href="#C3_19_573acdb4fc" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#efefef;stroke:#000000;" x="0.0" xlink:href="#C3_1a_4fc4e34f5f" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#f9f9f9;stroke:#000000;" x="0.0" xlink:href="#C3_1b_ad486f43a0" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#828282;stroke:#000000;" x="0.0" xlink:href="#C3_1c_b407a44d12" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#fdfdfd;stroke:#000000;" x="0.0" xlink:href="#C3_1d_e88119ab8c" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#a2a2a2;stroke:#000000;" x="0.0" xlink:href="#C3_1e_eeba54dc57" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#e0e0e0;stroke:#000000;" x="0.0" xlink:href="#C3_1f_e966ea828b" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#c3c3c3;stroke:#000000;" x="0.0" xlink:href="#C3_20_709f9b4c5f" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#8c8c8c;stroke:#000000;" x="0.0" xlink:href="#C3_21_1dbb7f5eea" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#999999;stroke:#000000;" x="0.0" xlink:href="#C3_22_9b3aa8d18f" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#b5b5b5;stroke:#000000;" x="0.0" xlink:href="#C3_23_663ca4d8fa" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#d2d2d2;stroke:#000000;" x="0.0" xlink:href="#C3_24_4a91fcb90d" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#fafafa;stroke:#000000;" x="0.0" xlink:href="#C3_25_a8f7045380" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#888888;stroke:#000000;" x="0.0" xlink:href="#C3_26_5216231f6a" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#eeeeee;stroke:#000000;" x="0.0" xlink:href="#C3_27_028ad7c157" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#ffffff;stroke:#000000;" x="0.0" xlink:href="#C3_28_a894b71143" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#8b8b8b;stroke:#000000;" x="0.0" xlink:href="#C3_29_9f4e3d53f4" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#aaaaaa;stroke:#000000;" x="0.0" xlink:href="#C3_2a_2e5f994285" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#fcfcfc;stroke:#000000;" x="0.0" xlink:href="#C3_2b_ca0f25b14a" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#e0e0e0;stroke:#000000;" x="0.0" xlink:href="#C3_2c_51a16e8514" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#959595;stroke:#000000;" x="0.0" xlink:href="#C3_2d_6962a141d8" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#a2a2a2;stroke:#000000;" x="0.0" xlink:href="#C3_2e_0cfcf356ae" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#c7c7c7;stroke:#000000;" x="0.0" xlink:href="#C3_2f_52ccb19d22" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#f8f8f8;stroke:#000000;" x="0.0" xlink:href="#C3_30_6998130303" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#8f8f8f;stroke:#000000;" x="0.0" xlink:href="#C3_31_3ef49c4e07" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#ececec;stroke:#000000;" x="0.0" xlink:href="#C3_32_9a128eb9cf" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#bcbcbc;stroke:#000000;" x="0.0" xlink:href="#C3_33_c048ef821a" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#d3d3d3;stroke:#000000;" x="0.0" xlink:href="#C3_34_8c7740a376" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#ffffff;stroke:#000000;" x="0.0" xlink:href="#C3_35_ea110442f2" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#909090;stroke:#000000;" x="0.0" xlink:href="#C3_36_c3f5b6566f" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#9a9a9a;stroke:#000000;" x="0.0" xlink:href="#C3_37_7ca09b95fc" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#fefefe;stroke:#000000;" x="0.0" xlink:href="#C3_38_418ddb86c6" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#b3b3b3;stroke:#000000;" x="0.0" xlink:href="#C3_39_f84d30c5b3" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#f5f5f5;stroke:#000000;" x="0.0" xlink:href="#C3_3a_7b8bc2ac73" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#dfdfdf;stroke:#000000;" x="0.0" xlink:href="#C3_3b_5478815331" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#9f9f9f;stroke:#000000;" x="0.0" xlink:href="#C3_3c_bf4794e4d0" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#979797;stroke:#000000;" x="0.0" xlink:href="#C3_3d_b6feb8b96b" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#f5f5f5;stroke:#000000;" x="0.0" xlink:href="#C3_3e_e3d6a284b9" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#adadad;stroke:#000000;" x="0.0" xlink:href="#C3_3f_59c49a3c10" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#e9e9e9;stroke:#000000;" x="0.0" xlink:href="#C3_40_0e736086af" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#fdfdfd;stroke:#000000;" x="0.0" xlink:href="#C3_41_d3942814d9" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#cbcbcb;stroke:#000000;" x="0.0" xlink:href="#C3_42_e3a71ecdc7" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#979797;stroke:#000000;" x="0.0" xlink:href="#C3_43_58d67724b2" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#adadad;stroke:#000000;" x="0.0" xlink:href="#C3_44_a38a3cd985" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#c3c3c3;stroke:#000000;" x="0.0" xlink:href="#C3_45_98445782f9" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#d4d4d4;stroke:#000000;" x="0.0" xlink:href="#C3_46_85f88ed662" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#e7e7e7;stroke:#000000;" x="0.0" xlink:href="#C3_47_da35ce48d6" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#fefefe;stroke:#000000;" x="0.0" xlink:href="#C3_48_efb96c43ee" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#9f9f9f;stroke:#000000;" x="0.0" xlink:href="#C3_49_083a16f269" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#f7f7f7;stroke:#000000;" x="0.0" xlink:href="#C3_4a_5736819ca1" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#bcbcbc;stroke:#000000;" x="0.0" xlink:href="#C3_4b_e18b7fb6a9" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#dddddd;stroke:#000000;" x="0.0" xlink:href="#C3_4c_602f20b4c8" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#c1c1c1;stroke:#000000;" x="0.0" xlink:href="#C3_4d_81c9019477" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#aaaaaa;stroke:#000000;" x="0.0" xlink:href="#C3_4e_3434791ce4" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#d5d5d5;stroke:#000000;" x="0.0" xlink:href="#C3_4f_ac4e967db3" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#a1a1a1;stroke:#000000;" x="0.0" xlink:href="#C3_50_975682b30c" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#f0f0f0;stroke:#000000;" x="0.0" xlink:href="#C3_51_60cd5caff9" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#b8b8b8;stroke:#000000;" x="0.0" xlink:href="#C3_52_533e6ec568" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#f9f9f9;stroke:#000000;" x="0.0" xlink:href="#C3_53_85cda3472e" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#e4e4e4;stroke:#000000;" x="0.0" xlink:href="#C3_54_92cb6d4224" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#9f9f9f;stroke:#000000;" x="0.0" xlink:href="#C3_55_81c0aadf5f" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#fcfcfc;stroke:#000000;" x="0.0" xlink:href="#C3_56_69df4b9cc2" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#b1b1b1;stroke:#000000;" x="0.0" xlink:href="#C3_57_514e30aebf" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#cfcfcf;stroke:#000000;" x="0.0" xlink:href="#C3_58_40226deb9f" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#a5a5a5;stroke:#000000;" x="0.0" xlink:href="#C3_59_69fa49ff49" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#cacaca;stroke:#000000;" x="0.0" xlink:href="#C3_5a_ae4c77ca3e" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#eaeaea;stroke:#000000;" x="0.0" xlink:href="#C3_5b_50d0ad521a" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#d4d4d4;stroke:#000000;" x="0.0" xlink:href="#C3_5c_39aee447dd" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#f7f7f7;stroke:#000000;" x="0.0" xlink:href="#C3_5d_e5929f6df0" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#b6b6b6;stroke:#000000;" x="0.0" xlink:href="#C3_5e_74f2dd295a" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#c6c6c6;stroke:#000000;" x="0.0" xlink:href="#C3_5f_b8efc6c68e" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#acacac;stroke:#000000;" x="0.0" xlink:href="#C3_60_b1686911b5" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#d9d9d9;stroke:#000000;" x="0.0" xlink:href="#C3_61_b2ea0945c8" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#e9e9e9;stroke:#000000;" x="0.0" xlink:href="#C3_62_8797684e6b" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#f3f3f3;stroke:#000000;" x="0.0" xlink:href="#C3_63_9b736e6615" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#c5c5c5;stroke:#000000;" x="0.0" xlink:href="#C3_64_6eea4782c4" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#c3c3c3;stroke:#000000;" x="0.0" xlink:href="#C3_65_3e635deb15" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#d9d9d9;stroke:#000000;" x="0.0" xlink:href="#C3_66_204f2810f3" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#a8a8a8;stroke:#000000;" x="0.0" xlink:href="#C3_67_2aacad9fad" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#dedede;stroke:#000000;" x="0.0" xlink:href="#C3_68_d62a3abbd2" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#f8f8f8;stroke:#000000;" x="0.0" xlink:href="#C3_69_1edd0d8840" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#c2c2c2;stroke:#000000;" x="0.0" xlink:href="#C3_6a_f196b45eca" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#b7b7b7;stroke:#000000;" x="0.0" xlink:href="#C3_6b_7987c3485a" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#ababab;stroke:#000000;" x="0.0" xlink:href="#C3_6c_799a5eae6b" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#e1e1e1;stroke:#000000;" x="0.0" xlink:href="#C3_6d_d7642355b4" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#b6b6b6;stroke:#000000;" x="0.0" xlink:href="#C3_6e_380a0eb2a9" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#d2d2d2;stroke:#000000;" x="0.0" xlink:href="#C3_6f_06677be795" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#ececec;stroke:#000000;" x="0.0" xlink:href="#C3_70_98958ec357" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#d0d0d0;stroke:#000000;" x="0.0" xlink:href="#C3_71_e77f05ee97" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#d4d4d4;stroke:#000000;" x="0.0" xlink:href="#C3_72_3833f84e20" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#f6f6f6;stroke:#000000;" x="0.0" xlink:href="#C3_73_4541b95066" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#cfcfcf;stroke:#000000;" x="0.0" xlink:href="#C3_74_058e15b53b" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#ebebeb;stroke:#000000;" x="0.0" xlink:href="#C3_75_67489cfb14" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#d5d5d5;stroke:#000000;" x="0.0" xlink:href="#C3_76_b209b776dd" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#cecece;stroke:#000000;" x="0.0" xlink:href="#C3_77_349bc305d2" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#b1b1b1;stroke:#000000;" x="0.0" xlink:href="#C3_78_11f1982bcd" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#d7d7d7;stroke:#000000;" x="0.0" xlink:href="#C3_79_ded2d13f47" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#c2c2c2;stroke:#000000;" x="0.0" xlink:href="#C3_7a_7bfc051170" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#cdcdcd;stroke:#000000;" x="0.0" xlink:href="#C3_7b_7fce1459b4" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#f3f3f3;stroke:#000000;" x="0.0" xlink:href="#C3_7c_a6c0c828fe" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#d8d8d8;stroke:#000000;" x="0.0" xlink:href="#C3_7d_3efefdebae" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#e3e3e3;stroke:#000000;" x="0.0" xlink:href="#C3_7e_18fbc2386f" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#cdcdcd;stroke:#000000;" x="0.0" xlink:href="#C3_7f_07949d0c09" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#d8d8d8;stroke:#000000;" x="0.0" xlink:href="#C3_80_2263544b1e" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#c8c8c8;stroke:#000000;" x="0.0" xlink:href="#C3_81_c67ed7b1cf" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#dbdbdb;stroke:#000000;" x="0.0" xlink:href="#C3_82_5b1b1703d9" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#bbbbbb;stroke:#000000;" x="0.0" xlink:href="#C3_83_7eb916dad4" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#b2b2b2;stroke:#000000;" x="0.0" xlink:href="#C3_84_743f39689a" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#cecece;stroke:#000000;" x="0.0" xlink:href="#C3_85_dfcafcd86b" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#d8d8d8;stroke:#000000;" x="0.0" xlink:href="#C3_86_cbe9adddd1" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#ebebeb;stroke:#000000;" x="0.0" xlink:href="#C3_87_815e569a96" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#c5c5c5;stroke:#000000;" x="0.0" xlink:href="#C3_88_962bc11bef" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#f3f3f3;stroke:#000000;" x="0.0" xlink:href="#C3_89_50c456e7b2" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#d0d0d0;stroke:#000000;" x="0.0" xlink:href="#C3_8a_8e9b19c3b6" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#d8d8d8;stroke:#000000;" x="0.0" xlink:href="#C3_8b_f3a72e8e39" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#e2e2e2;stroke:#000000;" x="0.0" xlink:href="#C3_8c_1d3a5422b6" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#bababa;stroke:#000000;" x="0.0" xlink:href="#C3_8d_a01de32d2f" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#d1d1d1;stroke:#000000;" x="0.0" xlink:href="#C3_8e_47b874a3d3" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#d6d6d6;stroke:#000000;" x="0.0" xlink:href="#C3_8f_8e71a037f3" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#ebebeb;stroke:#000000;" x="0.0" xlink:href="#C3_90_37398fe61a" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#d3d3d3;stroke:#000000;" x="0.0" xlink:href="#C3_91_49e8df08bc" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#d5d5d5;stroke:#000000;" x="0.0" xlink:href="#C3_92_965992a07e" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#bababa;stroke:#000000;" x="0.0" xlink:href="#C3_93_514369ea95" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#c9c9c9;stroke:#000000;" x="0.0" xlink:href="#C3_94_63922a5ba0" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#eeeeee;stroke:#000000;" x="0.0" xlink:href="#C3_95_1bd33d7f21" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#e0e0e0;stroke:#000000;" x="0.0" xlink:href="#C3_96_0491c18a4e" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#c1c1c1;stroke:#000000;" x="0.0" xlink:href="#C3_97_e3261ba7d3" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#e8e8e8;stroke:#000000;" x="0.0" xlink:href="#C3_98_f65b1d75e7" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#cbcbcb;stroke:#000000;" x="0.0" xlink:href="#C3_99_43f41f51fa" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#dcdcdc;stroke:#000000;" x="0.0" xlink:href="#C3_9a_94de889d4e" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#cdcdcd;stroke:#000000;" x="0.0" xlink:href="#C3_9b_3a3115e1de" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#bfbfbf;stroke:#000000;" x="0.0" xlink:href="#C3_9c_f83fe83520" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#dddddd;stroke:#000000;" x="0.0" xlink:href="#C3_9d_179d740d4d" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#e9e9e9;stroke:#000000;" x="0.0" xlink:href="#C3_9e_f18e636d6f" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#d3d3d3;stroke:#000000;" x="0.0" xlink:href="#C3_9f_b6940f40c4" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#d8d8d8;stroke:#000000;" x="0.0" xlink:href="#C3_a0_e66d6edbf9" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#c9c9c9;stroke:#000000;" x="0.0" xlink:href="#C3_a1_36db8986d6" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#c4c4c4;stroke:#000000;" x="0.0" xlink:href="#C3_a2_d7b118a736" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#e2e2e2;stroke:#000000;" x="0.0" xlink:href="#C3_a3_947052957b" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#e6e6e6;stroke:#000000;" x="0.0" xlink:href="#C3_a4_552e2a58c1" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#cecece;stroke:#000000;" x="0.0" xlink:href="#C3_a5_c8ab7f7ca1" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#dddddd;stroke:#000000;" x="0.0" xlink:href="#C3_a6_c491acb16a" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#d2d2d2;stroke:#000000;" x="0.0" xlink:href="#C3_a7_96a153c218" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#dbdbdb;stroke:#000000;" x="0.0" xlink:href="#C3_a8_fc017f59d6" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#d0d0d0;stroke:#000000;" x="0.0" xlink:href="#C3_a9_dacdc5ba87" y="302.4"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#dcdcdc;stroke:#000000;" x="0.0" xlink:href="#C3_aa_fd2787d743" y="302.4"/>
+    </g>
+   </g>
+   <g id="Patch3DCollection_1">
+    <defs>
+     <path d="
+M0 6.5192
+C1.72891 6.5192 3.38725 5.8323 4.60977 4.60977
+C5.8323 3.38725 6.5192 1.72891 6.5192 0
+C6.5192 -1.72891 5.8323 -3.38725 4.60977 -4.60977
+C3.38725 -5.8323 1.72891 -6.5192 0 -6.5192
+C-1.72891 -6.5192 -3.38725 -5.8323 -4.60977 -4.60977
+C-5.8323 -3.38725 -6.5192 -1.72891 -6.5192 0
+C-6.5192 1.72891 -5.8323 3.38725 -4.60977 4.60977
+C-3.38725 5.8323 -1.72891 6.5192 0 6.5192
+z
+" id="C4_0_8a718578fa"/>
+    </defs>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#0000ff;fill-opacity:0.3;stroke:#000000;stroke-opacity:0.3;" x="289.283570195" xlink:href="#C4_0_8a718578fa" y="199.355741588"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#0000ff;fill-opacity:0.484050197891;stroke:#000000;stroke-opacity:0.484050197891;" x="305.179926619" xlink:href="#C4_0_8a718578fa" y="164.821171376"/>
+    </g>
+    <g clip-path="url(#p81a71e1e6d)">
+     <use style="fill:#0000ff;stroke:#000000;" x="349.742345162" xlink:href="#C4_0_8a718578fa" y="68.010057501"/>
+    </g>
+   </g>
+   <g id="line2d_30">
+    <path clip-path="url(#p81a71e1e6d)" d="
+M289.284 199.356
+L305.18 164.821" style="fill:none;stroke:#008000;stroke-linecap:square;stroke-width:3;"/>
+   </g>
+   <g id="line2d_31">
+    <path clip-path="url(#p81a71e1e6d)" d="
+M305.18 164.821
+L349.742 68.0101" style="fill:none;stroke:#0000ff;stroke-linecap:square;stroke-width:3;"/>
+   </g>
+   <g id="line2d_32">
+    <path clip-path="url(#p81a71e1e6d)" d="
+M289.284 199.356
+L421.41 219.575" style="fill:none;stroke:#ff0000;stroke-linecap:square;"/>
+   </g>
+   <g id="line2d_33">
+    <path clip-path="url(#p81a71e1e6d)" d="
+M305.18 164.821
+L305.139 215.231" style="fill:none;stroke:#008000;stroke-linecap:square;"/>
+   </g>
+   <g id="line2d_34">
+    <path clip-path="url(#p81a71e1e6d)" d="
+M289.284 199.356
+L331.605 241.732" style="fill:none;stroke:#ff0000;stroke-linecap:square;"/>
+   </g>
+   <g id="line2d_35">
+    <path clip-path="url(#p81a71e1e6d)" d="
+M289.284 199.356
+L288.345 18.1974" style="fill:none;stroke:#ff0000;stroke-linecap:square;"/>
+   </g>
+   <g id="line2d_36">
+    <path clip-path="url(#p81a71e1e6d)" d="
+M374.531 212.401
+L372.925 213.144
+L371.226 213.873
+L369.435 214.588
+L367.554 215.287
+L365.586 215.969
+L363.531 216.634
+L361.393 217.282
+L359.173 217.911
+L356.874 218.52
+L354.498 219.109
+L352.048 219.677
+L349.526 220.223
+L346.936 220.748
+L344.28 221.249
+L341.56 221.727
+L338.781 222.181
+L335.945 222.61
+L333.056 223.014
+L330.116 223.392
+L327.129 223.745
+L324.098 224.07
+L321.028 224.369
+L317.92 224.641
+L314.78 224.884" style="fill:none;stroke:#ff0000;stroke-linecap:square;stroke-width:2;"/>
+   </g>
+   <g id="line2d_37">
+    <path clip-path="url(#p81a71e1e6d)" d="
+M288.64 75.0987
+L289.936 76.2975
+L291.236 77.6379
+L292.536 79.1186
+L293.836 80.7383
+L295.134 82.4957
+L296.428 84.3889
+L297.716 86.416
+L298.998 88.5749
+L300.271 90.8633
+L301.534 93.2787
+L302.785 95.8183
+L304.022 98.4792
+L305.245 101.258
+L306.451 104.152
+L307.638 107.158
+L308.806 110.271
+L309.953 113.488
+L311.077 116.806
+L312.176 120.219
+L313.25 123.724
+L314.298 127.316
+L315.316 130.99
+L316.306 134.743
+L317.264 138.569" style="fill:none;stroke:#0000ff;stroke-linecap:square;stroke-width:2;"/>
+   </g>
+   <g id="text_27">
+    <!-- r -->
+    <defs>
+     <path d="
+M49.0312 39.7969
+Q46.7344 40.875 44.4531 41.375
+Q42.1875 41.8906 39.8906 41.8906
+Q33.1562 41.8906 29.5156 37.5625
+Q25.875 33.25 25.875 25.2031
+L25.875 0
+L8.40625 0
+L8.40625 54.6875
+L25.875 54.6875
+L25.875 45.7031
+Q29.25 51.0781 33.6094 53.5312
+Q37.9844 56 44.0938 56
+Q44.9688 56 45.9844 55.9219
+Q47.0156 55.8594 48.9688 55.6094
+z
+" id="DejaVuSans-Bold-72"/>
+    </defs>
+    <g transform="translate(351.547477196 59.2206244608)scale(0.2 -0.2)">
+     <use xlink:href="#DejaVuSans-Bold-72"/>
+    </g>
+   </g>
+   <g id="text_28">
+    <!-- $\varphi$ -->
+    <defs>
+     <path d="
+M16.3125 -19
+Q16.3125 -18.6094 16.5 -17.8281
+L22.125 -0.203125
+Q14.6562 1.65625 9.8125 6.6875
+Q4.98438 11.7188 4.98438 19
+Q4.98438 22.6562 6.34375 27.25
+Q7.71875 31.8438 9.85938 35.9688
+Q12.0156 40.0938 14.5 42.8281
+Q15.0938 43.1094 15.1875 43.1094
+L16.4062 43.1094
+Q16.7031 43.1094 16.9375 42.8125
+Q17.1875 42.5312 17.1875 42.1875
+Q17.1875 41.7969 17 41.6094
+Q15.3281 39.7969 13.7344 37.1875
+Q12.1562 34.5781 10.9062 31.6875
+Q9.67188 28.8125 8.84375 25.6406
+Q8.01562 22.4688 8.01562 20.125
+Q8.01562 14.2031 12.7188 10.5625
+Q17.4375 6.9375 23.875 5.71875
+L26.7031 14.7031
+Q28.5625 20.5156 30.3906 25.0781
+Q32.2344 29.6406 34.9844 34
+Q37.75 38.375 41.6562 41.2812
+Q45.5625 44.1875 50.3906 44.1875
+Q54.2031 44.1875 56.7656 42.2812
+Q59.3281 40.375 60.5625 37.2031
+Q61.8125 34.0312 61.8125 30.4219
+Q61.8125 24.4688 59.1719 18.7812
+Q56.5469 13.0938 51.9531 8.5625
+Q47.3594 4.04688 41.5938 1.45312
+Q35.8438 -1.125 29.9844 -1.125
+Q29.2031 -1.07812 28.2969 -1.03125
+Q27.3906 -0.984375 26.8125 -0.984375
+L23.4844 -18.4062
+Q23.1875 -19.875 21.9844 -20.8281
+Q20.7969 -21.7812 19.2812 -21.7812
+Q18.0625 -21.7812 17.1875 -21.0156
+Q16.3125 -20.2656 16.3125 -19
+M27.875 5.17188
+Q29 5.07812 31.1094 5.07812
+Q37.3125 5.07812 43.7188 8.125
+Q50.1406 11.1875 54.3594 16.5
+Q58.5938 21.8281 58.5938 28.0781
+Q58.5938 30.9062 57.4375 33.1562
+Q56.2969 35.4062 54.2188 36.6875
+Q52.1562 37.9844 49.4219 37.9844
+Q41.6562 37.9844 36.4219 30.4688
+Q31.2031 22.9531 29.5938 14.3125
+z
+" id="Cmmi10-27"/>
+    </defs>
+    <g transform="translate(343.107967832 236.150796535)scale(0.2 -0.2)">
+     <use transform="translate(0.0 0.8125)" xlink:href="#Cmmi10-27"/>
+    </g>
+   </g>
+   <g id="text_29">
+    <!-- $\vartheta$ -->
+    <defs>
+     <path d="
+M10.5 10.2969
+Q10.5 13.5781 11.5312 17.2812
+L15.2812 32.4219
+Q16.0156 35.2031 16.0156 37.3125
+Q16.0156 41.6094 13.0938 41.6094
+Q9.96875 41.6094 8.45312 37.8594
+Q6.9375 34.125 5.51562 28.4219
+Q5.51562 28.125 5.21875 27.9531
+Q4.9375 27.7812 4.6875 27.7812
+L3.51562 27.7812
+Q3.17188 27.7812 2.92188 28.1406
+Q2.6875 28.5156 2.6875 28.8125
+Q3.76562 33.1562 4.76562 36.1719
+Q5.76562 39.2031 7.89062 41.6875
+Q10.0156 44.1875 13.1875 44.1875
+Q17.2812 44.1875 19.9844 41.5938
+Q22.7031 39.0156 22.7031 35.0156
+Q22.7031 33.5938 22.4062 32.1719
+L18.6094 17.0938
+Q17.4375 12.5938 17.2812 9.1875
+Q17.2812 1.51562 24.7031 1.51562
+Q29.2031 1.51562 33.0312 7.6875
+Q36.8594 13.875 39.2812 21.1719
+Q41.7031 28.4688 43.4062 35.2969
+Q27 40.7188 27 52.0938
+Q27 56.1562 28.9688 60.4531
+Q30.9531 64.75 34.4219 67.625
+Q37.8906 70.5156 42 70.5156
+Q45.4062 70.5156 47.6719 68.5
+Q49.9531 66.5 51.1719 63.4219
+Q52.3906 60.3594 52.8594 57.0781
+Q53.3281 53.8125 53.3281 50.4844
+Q53.3281 44.2812 51.4219 35.7969
+Q52.3438 35.5938 53.4219 35.3906
+Q54.5 35.2031 55.3438 34.8594
+Q56.2031 34.5156 56.2031 33.8906
+Q55.9531 32.3281 54.9844 32.3281
+Q54.2969 32.4688 53.2188 32.6875
+Q52.1562 32.9062 50.6875 33.2031
+Q48.9688 26.5625 45.2031 18.625
+Q41.4531 10.6875 36.0625 4.78125
+Q30.6719 -1.125 24.6094 -1.125
+Q18.2656 -1.125 14.375 1.53125
+Q10.5 4.20312 10.5 10.2969
+M44 37.7969
+Q46.9219 49.2656 46.9219 56.2969
+Q46.9219 67.9219 41.7969 67.9219
+Q38.4844 67.9219 35.7656 65.375
+Q33.0625 62.8438 31.4688 59.1562
+Q29.8906 55.4688 29.8906 52.2969
+Q29.8906 42.9688 44 37.7969" id="Cmmi10-23"/>
+    </defs>
+    <g transform="translate(305.914790088 80.6944204741)scale(0.2 -0.2)">
+     <use transform="translate(0.0 0.484375)" xlink:href="#Cmmi10-23"/>
+    </g>
+   </g>
+  </g>
+ </g>
+ <defs>
+  <clipPath id="p81a71e1e6d">
+   <rect height="288.0" width="576.0" x="7.2" y="7.2"/>
+  </clipPath>
+ </defs>
+</svg>
diff --git a/docs/figures/Coordinates_17_0.svg b/docs/figures/Coordinates_17_0.svg
new file mode 100644
index 0000000000000000000000000000000000000000..f4f06bdcd513057da26544c174e054fca25f6de6
--- /dev/null
+++ b/docs/figures/Coordinates_17_0.svg
@@ -0,0 +1,590 @@
+<?xml version="1.0" encoding="utf-8" standalone="no"?>
+<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
+  "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
+<!-- Created with matplotlib (http://matplotlib.org/) -->
+<svg height="362pt" version="1.1" viewBox="0 0 494 362" width="494pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
+ <defs>
+  <style type="text/css">
+*{stroke-linecap:butt;stroke-linejoin:round;}
+  </style>
+ </defs>
+ <g id="figure_1">
+  <g id="patch_1">
+   <path d="
+M0 362.878
+L494.43 362.878
+L494.43 0
+L0 0
+z
+" style="fill:none;"/>
+  </g>
+  <g id="axes_1">
+   <g id="patch_2">
+    <path clip-path="url(#p4db4202fc0)" d="
+M218.218 180.531
+C213.231 175.649 207.551 171.823 201.435 169.226
+C195.318 166.629 188.859 165.3 182.35 165.3" style="fill:none;stroke:#000000;"/>
+   </g>
+   <g id="patch_3">
+    <path clip-path="url(#p4db4202fc0)" d="
+M142.924 261.947
+C157.376 266.463 174.502 268.361 191.417 267.323
+C208.332 266.284 224.031 262.371 235.869 256.241" style="fill:none;stroke:#000000;"/>
+   </g>
+   <g id="line2d_1">
+    <path clip-path="url(#p4db4202fc0)" d="
+M182.35 230.4
+L442.75 230.4" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:2;"/>
+   </g>
+   <g id="line2d_2">
+    <path clip-path="url(#p4db4202fc0)" d="
+M182.35 230.4
+L70.75 323.4" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:2;"/>
+   </g>
+   <g id="line2d_3">
+    <path clip-path="url(#p4db4202fc0)" d="
+M182.35 230.4
+L182.35 7.2" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:2;"/>
+   </g>
+   <g id="line2d_4">
+    <path clip-path="url(#p4db4202fc0)" d="
+M182.35 230.4
+L293.95 81.6" style="fill:none;stroke:#0000ff;stroke-linecap:square;stroke-width:2;"/>
+   </g>
+   <g id="line2d_5">
+    <path clip-path="url(#p4db4202fc0)" d="
+M293.95 81.6
+L293.95 286.2" style="fill:none;stroke:#ff0000;stroke-dasharray:6.000000,6.000000;stroke-dashoffset:0.0;"/>
+   </g>
+   <g id="line2d_6">
+    <path clip-path="url(#p4db4202fc0)" d="
+M182.35 230.4
+L293.95 286.2" style="fill:none;stroke:#0000ff;stroke-dasharray:6.000000,6.000000;stroke-dashoffset:0.0;"/>
+   </g>
+   <g id="line2d_7">
+    <path clip-path="url(#p4db4202fc0)" d="
+M115.39 286.2
+L293.95 286.2" style="fill:none;stroke:#ff0000;stroke-dasharray:6.000000,6.000000;stroke-dashoffset:0.0;"/>
+   </g>
+   <g id="line2d_8">
+    <path clip-path="url(#p4db4202fc0)" d="
+M293.95 286.2
+L360.91 230.4" style="fill:none;stroke:#ff0000;stroke-dasharray:6.000000,6.000000;stroke-dashoffset:0.0;"/>
+   </g>
+   <g id="line2d_9">
+    <path clip-path="url(#p4db4202fc0)" d="
+M182.35 25.8
+L293.95 81.6" style="fill:none;stroke:#ff0000;stroke-dasharray:6.000000,6.000000;stroke-dashoffset:0.0;"/>
+   </g>
+   <g id="text_1">
+    <!-- r -->
+    <defs>
+     <path d="
+M49.0312 39.7969
+Q46.7344 40.875 44.4531 41.375
+Q42.1875 41.8906 39.8906 41.8906
+Q33.1562 41.8906 29.5156 37.5625
+Q25.875 33.25 25.875 25.2031
+L25.875 0
+L8.40625 0
+L8.40625 54.6875
+L25.875 54.6875
+L25.875 45.7031
+Q29.25 51.0781 33.6094 53.5312
+Q37.9844 56 44.0938 56
+Q44.9688 56 45.9844 55.9219
+Q47.0156 55.8594 48.9688 55.6094
+z
+" id="DejaVuSans-Bold-72"/>
+    </defs>
+    <g transform="translate(305.11 76.02)scale(0.2 -0.2)">
+     <use xlink:href="#DejaVuSans-Bold-72"/>
+    </g>
+   </g>
+   <g id="text_2">
+    <!-- $r$ -->
+    <defs>
+     <path d="
+M7.71875 1.70312
+Q7.71875 2.29688 7.8125 2.59375
+L15.2812 32.4219
+Q16.0156 35.2031 16.0156 37.3125
+Q16.0156 41.6094 13.0938 41.6094
+Q9.96875 41.6094 8.45312 37.8594
+Q6.9375 34.125 5.51562 28.4219
+Q5.51562 28.125 5.21875 27.9531
+Q4.9375 27.7812 4.6875 27.7812
+L3.51562 27.7812
+Q3.17188 27.7812 2.92188 28.1406
+Q2.6875 28.5156 2.6875 28.8125
+Q3.76562 33.1562 4.76562 36.1719
+Q5.76562 39.2031 7.89062 41.6875
+Q10.0156 44.1875 13.1875 44.1875
+Q16.6562 44.1875 19.2656 42.1875
+Q21.875 40.1875 22.5156 36.9219
+Q25.0469 40.2344 28.2969 42.2031
+Q31.5469 44.1875 35.4062 44.1875
+Q38.5781 44.1875 40.9844 42.3281
+Q43.4062 40.4844 43.4062 37.3125
+Q43.4062 34.7656 41.8125 32.875
+Q40.2344 31 37.5938 31
+Q35.9844 31 34.8906 32
+Q33.7969 33.0156 33.7969 34.625
+Q33.7969 36.8125 35.4062 38.5469
+Q37.0156 40.2812 39.1094 40.2812
+Q37.5 41.6094 35.2031 41.6094
+Q30.9062 41.6094 27.7344 38.5469
+Q24.5625 35.5 22.0156 30.8125
+L14.8906 2.20312
+Q14.5469 0.828125 13.3438 -0.140625
+Q12.1562 -1.125 10.6875 -1.125
+Q9.46875 -1.125 8.59375 -0.34375
+Q7.71875 0.4375 7.71875 1.70312" id="Cmmi10-72"/>
+    </defs>
+    <g transform="translate(238.15 137.4)scale(0.2 -0.2)">
+     <use transform="translate(0.0 0.8125)" xlink:href="#Cmmi10-72"/>
+    </g>
+   </g>
+   <g id="text_3">
+    <!-- $\vartheta$ -->
+    <defs>
+     <path d="
+M10.5 10.2969
+Q10.5 13.5781 11.5312 17.2812
+L15.2812 32.4219
+Q16.0156 35.2031 16.0156 37.3125
+Q16.0156 41.6094 13.0938 41.6094
+Q9.96875 41.6094 8.45312 37.8594
+Q6.9375 34.125 5.51562 28.4219
+Q5.51562 28.125 5.21875 27.9531
+Q4.9375 27.7812 4.6875 27.7812
+L3.51562 27.7812
+Q3.17188 27.7812 2.92188 28.1406
+Q2.6875 28.5156 2.6875 28.8125
+Q3.76562 33.1562 4.76562 36.1719
+Q5.76562 39.2031 7.89062 41.6875
+Q10.0156 44.1875 13.1875 44.1875
+Q17.2812 44.1875 19.9844 41.5938
+Q22.7031 39.0156 22.7031 35.0156
+Q22.7031 33.5938 22.4062 32.1719
+L18.6094 17.0938
+Q17.4375 12.5938 17.2812 9.1875
+Q17.2812 1.51562 24.7031 1.51562
+Q29.2031 1.51562 33.0312 7.6875
+Q36.8594 13.875 39.2812 21.1719
+Q41.7031 28.4688 43.4062 35.2969
+Q27 40.7188 27 52.0938
+Q27 56.1562 28.9688 60.4531
+Q30.9531 64.75 34.4219 67.625
+Q37.8906 70.5156 42 70.5156
+Q45.4062 70.5156 47.6719 68.5
+Q49.9531 66.5 51.1719 63.4219
+Q52.3906 60.3594 52.8594 57.0781
+Q53.3281 53.8125 53.3281 50.4844
+Q53.3281 44.2812 51.4219 35.7969
+Q52.3438 35.5938 53.4219 35.3906
+Q54.5 35.2031 55.3438 34.8594
+Q56.2031 34.5156 56.2031 33.8906
+Q55.9531 32.3281 54.9844 32.3281
+Q54.2969 32.4688 53.2188 32.6875
+Q52.1562 32.9062 50.6875 33.2031
+Q48.9688 26.5625 45.2031 18.625
+Q41.4531 10.6875 36.0625 4.78125
+Q30.6719 -1.125 24.6094 -1.125
+Q18.2656 -1.125 14.375 1.53125
+Q10.5 4.20312 10.5 10.2969
+M44 37.7969
+Q46.9219 49.2656 46.9219 56.2969
+Q46.9219 67.9219 41.7969 67.9219
+Q38.4844 67.9219 35.7656 65.375
+Q33.0625 62.8438 31.4688 59.1562
+Q29.8906 55.4688 29.8906 52.2969
+Q29.8906 42.9688 44 37.7969" id="Cmmi10-23"/>
+    </defs>
+    <g transform="translate(200.95 161.58)scale(0.2 -0.2)">
+     <use transform="translate(0.0 0.484375)" xlink:href="#Cmmi10-23"/>
+    </g>
+   </g>
+   <g id="text_4">
+    <!-- $\varphi$ -->
+    <defs>
+     <path d="
+M16.3125 -19
+Q16.3125 -18.6094 16.5 -17.8281
+L22.125 -0.203125
+Q14.6562 1.65625 9.8125 6.6875
+Q4.98438 11.7188 4.98438 19
+Q4.98438 22.6562 6.34375 27.25
+Q7.71875 31.8438 9.85938 35.9688
+Q12.0156 40.0938 14.5 42.8281
+Q15.0938 43.1094 15.1875 43.1094
+L16.4062 43.1094
+Q16.7031 43.1094 16.9375 42.8125
+Q17.1875 42.5312 17.1875 42.1875
+Q17.1875 41.7969 17 41.6094
+Q15.3281 39.7969 13.7344 37.1875
+Q12.1562 34.5781 10.9062 31.6875
+Q9.67188 28.8125 8.84375 25.6406
+Q8.01562 22.4688 8.01562 20.125
+Q8.01562 14.2031 12.7188 10.5625
+Q17.4375 6.9375 23.875 5.71875
+L26.7031 14.7031
+Q28.5625 20.5156 30.3906 25.0781
+Q32.2344 29.6406 34.9844 34
+Q37.75 38.375 41.6562 41.2812
+Q45.5625 44.1875 50.3906 44.1875
+Q54.2031 44.1875 56.7656 42.2812
+Q59.3281 40.375 60.5625 37.2031
+Q61.8125 34.0312 61.8125 30.4219
+Q61.8125 24.4688 59.1719 18.7812
+Q56.5469 13.0938 51.9531 8.5625
+Q47.3594 4.04688 41.5938 1.45312
+Q35.8438 -1.125 29.9844 -1.125
+Q29.2031 -1.07812 28.2969 -1.03125
+Q27.3906 -0.984375 26.8125 -0.984375
+L23.4844 -18.4062
+Q23.1875 -19.875 21.9844 -20.8281
+Q20.7969 -21.7812 19.2812 -21.7812
+Q18.0625 -21.7812 17.1875 -21.0156
+Q16.3125 -20.2656 16.3125 -19
+M27.875 5.17188
+Q29 5.07812 31.1094 5.07812
+Q37.3125 5.07812 43.7188 8.125
+Q50.1406 11.1875 54.3594 16.5
+Q58.5938 21.8281 58.5938 28.0781
+Q58.5938 30.9062 57.4375 33.1562
+Q56.2969 35.4062 54.2188 36.6875
+Q52.1562 37.9844 49.4219 37.9844
+Q41.6562 37.9844 36.4219 30.4688
+Q31.2031 22.9531 29.5938 14.3125
+z
+" id="Cmmi10-27"/>
+    </defs>
+    <g transform="translate(204.67 276.9)scale(0.2 -0.2)">
+     <use transform="translate(0.0 0.8125)" xlink:href="#Cmmi10-27"/>
+    </g>
+   </g>
+   <g id="text_5">
+    <!-- $y$ -->
+    <defs>
+     <path d="
+M8.40625 -14.3125
+Q10.5 -17.9219 15.7188 -17.9219
+Q20.4531 -17.9219 23.9219 -14.5938
+Q27.3906 -11.2812 29.5156 -6.5625
+Q31.6406 -1.85938 32.8125 3.07812
+Q28.375 -1.125 23.1875 -1.125
+Q19.2344 -1.125 16.4531 0.234375
+Q13.6719 1.60938 12.125 4.3125
+Q10.5938 7.03125 10.5938 10.8906
+Q10.5938 14.1562 11.4688 17.5938
+Q12.3594 21.0469 13.9375 25.2656
+Q15.5312 29.5 16.7031 32.625
+Q18.0156 36.2812 18.0156 38.625
+Q18.0156 41.6094 15.8281 41.6094
+Q11.8594 41.6094 9.29688 37.5312
+Q6.73438 33.4531 5.51562 28.4219
+Q5.32812 27.7812 4.6875 27.7812
+L3.51562 27.7812
+Q2.6875 27.7812 2.6875 28.7188
+L2.6875 29
+Q4.29688 34.9688 7.60938 39.5781
+Q10.9375 44.1875 16.0156 44.1875
+Q19.5781 44.1875 22.0469 41.8438
+Q24.5156 39.5 24.5156 35.8906
+Q24.5156 34.0312 23.6875 31.9844
+Q23.25 30.7656 21.6875 26.6562
+Q20.125 22.5625 19.2812 19.875
+Q18.4531 17.1875 17.9219 14.5938
+Q17.3906 12.0156 17.3906 9.42188
+Q17.3906 6.10938 18.7969 3.8125
+Q20.2188 1.51562 23.2969 1.51562
+Q29.5 1.51562 34.4219 9.07812
+L42 39.8906
+Q42.3281 41.2188 43.5469 42.1562
+Q44.7812 43.1094 46.1875 43.1094
+Q47.4062 43.1094 48.3125 42.3281
+Q49.2188 41.5469 49.2188 40.2812
+Q49.2188 39.7031 49.125 39.5
+L39.2031 -0.296875
+Q37.8906 -5.42188 34.375 -10.1094
+Q30.8594 -14.7969 25.9062 -17.6562
+Q20.9531 -20.5156 15.5781 -20.5156
+Q12.9844 -20.5156 10.4375 -19.5
+Q7.90625 -18.5 6.34375 -16.5
+Q4.78125 -14.5 4.78125 -11.8125
+Q4.78125 -9.07812 6.39062 -7.07812
+Q8.01562 -5.07812 10.6875 -5.07812
+Q12.3125 -5.07812 13.4062 -6.07812
+Q14.5 -7.07812 14.5 -8.6875
+Q14.5 -10.9844 12.7812 -12.6875
+Q11.0781 -14.4062 8.79688 -14.4062
+Q8.6875 -14.3594 8.59375 -14.3281
+Q8.5 -14.3125 8.40625 -14.3125" id="Cmmi10-79"/>
+    </defs>
+    <g transform="translate(331.15 222.96)scale(0.2 -0.2)">
+     <use transform="translate(0.0 0.8125)" xlink:href="#Cmmi10-79"/>
+    </g>
+   </g>
+   <g id="text_6">
+    <!-- $x$ -->
+    <defs>
+     <path d="
+M7.8125 2.875
+Q9.57812 1.51562 12.7969 1.51562
+Q15.9219 1.51562 18.3125 4.51562
+Q20.7031 7.51562 21.5781 11.0781
+L26.125 28.8125
+Q27.2031 33.6406 27.2031 35.4062
+Q27.2031 37.8906 25.8125 39.75
+Q24.4219 41.6094 21.9219 41.6094
+Q18.75 41.6094 15.9688 39.625
+Q13.1875 37.6406 11.2812 34.5938
+Q9.375 31.5469 8.59375 28.4219
+Q8.40625 27.7812 7.8125 27.7812
+L6.59375 27.7812
+Q5.8125 27.7812 5.8125 28.7188
+L5.8125 29
+Q6.78125 32.7188 9.125 36.25
+Q11.4688 39.7969 14.8594 41.9844
+Q18.2656 44.1875 22.125 44.1875
+Q25.7812 44.1875 28.7344 42.2344
+Q31.6875 40.2812 32.9062 36.9219
+Q34.625 39.9844 37.2812 42.0781
+Q39.9375 44.1875 43.1094 44.1875
+Q45.2656 44.1875 47.5 43.4219
+Q49.75 42.6719 51.1719 41.1094
+Q52.5938 39.5469 52.5938 37.2031
+Q52.5938 34.6719 50.9531 32.8281
+Q49.3125 31 46.7812 31
+Q45.1719 31 44.0938 32.0312
+Q43.0156 33.0625 43.0156 34.625
+Q43.0156 36.7188 44.4531 38.2969
+Q45.9062 39.8906 47.9062 40.1875
+Q46.0938 41.6094 42.9219 41.6094
+Q39.7031 41.6094 37.3281 38.625
+Q34.9688 35.6406 33.9844 31.9844
+L29.5938 14.3125
+Q28.5156 10.2969 28.5156 7.71875
+Q28.5156 5.17188 29.9531 3.34375
+Q31.3906 1.51562 33.7969 1.51562
+Q38.4844 1.51562 42.1562 5.64062
+Q45.8438 9.76562 47.0156 14.7031
+Q47.2188 15.2812 47.7969 15.2812
+L49.0312 15.2812
+Q49.4219 15.2812 49.6562 15.0156
+Q49.9062 14.75 49.9062 14.4062
+Q49.9062 14.3125 49.8125 14.1094
+Q48.3906 8.15625 43.8438 3.51562
+Q39.3125 -1.125 33.5938 -1.125
+Q29.9375 -1.125 26.9844 0.84375
+Q24.0312 2.82812 22.7969 6.20312
+Q21.2344 3.26562 18.4688 1.0625
+Q15.7188 -1.125 12.5938 -1.125
+Q10.4531 -1.125 8.17188 -0.359375
+Q5.90625 0.390625 4.48438 1.95312
+Q3.07812 3.51562 3.07812 5.90625
+Q3.07812 8.25 4.70312 10.1719
+Q6.34375 12.1094 8.79688 12.1094
+Q10.4531 12.1094 11.5781 11.1094
+Q12.7031 10.1094 12.7031 8.5
+Q12.7031 6.39062 11.2969 4.82812
+Q9.90625 3.26562 7.8125 2.875" id="Cmmi10-78"/>
+    </defs>
+    <g transform="translate(115.39 267.6)scale(0.2 -0.2)">
+     <use transform="translate(0.0 0.8125)" xlink:href="#Cmmi10-78"/>
+    </g>
+   </g>
+   <g id="text_7">
+    <!-- $z$ -->
+    <defs>
+     <path d="
+M4.89062 -1.125
+Q4.10938 -1.125 4.10938 -0.203125
+Q4.10938 0.296875 4.29688 0.484375
+Q6.98438 5.125 10.7656 9.34375
+Q14.5469 13.5781 19.3594 17.8906
+Q24.1719 22.2188 29.0312 26.5625
+Q33.8906 30.9062 36.9219 34.2812
+L36.5312 34.2812
+Q34.3281 34.2812 30.0781 35.6875
+Q25.8281 37.1094 23.3906 37.1094
+Q20.75 37.1094 18.25 35.9531
+Q15.7656 34.8125 15.0938 32.4219
+Q14.9375 31.6875 14.3125 31.6875
+L13.0938 31.6875
+Q12.3125 31.6875 12.3125 32.7188
+L12.3125 33.0156
+Q13.0938 35.9375 14.875 38.4688
+Q16.6562 41.0156 19.2656 42.5938
+Q21.875 44.1875 24.7031 44.1875
+Q26.7031 44.1875 28.0156 43.2812
+Q29.3438 42.3906 31.0938 40.4844
+Q32.8594 38.5781 33.9531 37.75
+Q35.0625 36.9219 36.7188 36.9219
+Q38.9219 36.9219 40.6562 38.9219
+Q42.3906 40.9219 44.0938 43.8906
+Q44.3906 44.1875 44.8281 44.1875
+L46 44.1875
+Q46.3438 44.1875 46.5625 43.9375
+Q46.7812 43.7031 46.7812 43.3125
+Q46.7812 42.9688 46.5781 42.6719
+Q43.8906 38.0312 40.2969 34
+Q36.7188 29.9844 30.9219 24.7812
+Q25.1406 19.5781 21.1562 15.9844
+Q17.1875 12.4062 13.7188 8.59375
+Q14.5 8.79688 15.8281 8.79688
+Q18.2656 8.79688 22.4844 7.39062
+Q26.7031 6 29 6
+Q31.5 6 34.0312 7.07812
+Q36.5781 8.15625 38.4219 10.1094
+Q40.2812 12.0625 40.9219 14.5938
+Q41.1562 15.2812 41.7031 15.2812
+L42.9219 15.2812
+Q43.3125 15.2812 43.5469 14.9688
+Q43.7969 14.6562 43.7969 14.3125
+Q43.7969 14.2031 43.7031 14.0156
+Q42.7812 10.2031 40.4844 6.76562
+Q38.1875 3.32812 34.8438 1.09375
+Q31.5 -1.125 27.6875 -1.125
+Q25.7812 -1.125 24.4531 -0.234375
+Q23.1406 0.640625 21.3594 2.5625
+Q19.5781 4.5 18.4531 5.34375
+Q17.3281 6.20312 15.7188 6.20312
+Q10.75 6.20312 6.78125 -0.78125
+Q6.45312 -1.125 6.10938 -1.125
+z
+" id="Cmmi10-7a"/>
+    </defs>
+    <g transform="translate(301.39 196.92)scale(0.2 -0.2)">
+     <use transform="translate(0.0 0.8125)" xlink:href="#Cmmi10-7a"/>
+    </g>
+   </g>
+   <g id="text_8">
+    <!-- $r\sin\vartheta$ -->
+    <defs>
+     <path d="
+M2.98438 0
+L2.98438 3.51562
+Q6.39062 3.51562 8.59375 4.04688
+Q10.7969 4.59375 10.7969 6.6875
+L10.7969 33.9844
+Q10.7969 36.6719 9.98438 37.8594
+Q9.1875 39.0625 7.67188 39.3281
+Q6.15625 39.5938 2.98438 39.5938
+L2.98438 43.1094
+L17.4844 44.1875
+L17.4844 34.4219
+Q19.4844 38.7188 23.4062 41.4531
+Q27.3438 44.1875 31.9844 44.1875
+Q38.9219 44.1875 42.4062 40.8594
+Q45.9062 37.5469 45.9062 30.7188
+L45.9062 6.6875
+Q45.9062 4.59375 48.0938 4.04688
+Q50.2969 3.51562 53.7188 3.51562
+L53.7188 0
+L30.8125 0
+L30.8125 3.51562
+Q34.2344 3.51562 36.4219 4.04688
+Q38.625 4.59375 38.625 6.6875
+L38.625 30.4219
+Q38.625 35.2969 37.2031 38.4531
+Q35.7969 41.6094 31.3906 41.6094
+Q25.5938 41.6094 21.8438 36.9688
+Q18.1094 32.3281 18.1094 26.4219
+L18.1094 6.6875
+Q18.1094 4.59375 20.3125 4.04688
+Q22.5156 3.51562 25.875 3.51562
+L25.875 0
+z
+" id="Cmr10-6e"/>
+     <path d="
+M3.32812 -0.296875
+L3.32812 16.0156
+Q3.32812 16.7969 4.20312 16.7969
+L5.42188 16.7969
+Q6 16.7969 6.20312 16.0156
+Q8.98438 1.51562 19.6719 1.51562
+Q24.4219 1.51562 27.6094 3.65625
+Q30.8125 5.8125 30.8125 10.2969
+Q30.8125 13.5312 28.3125 15.7969
+Q25.8281 18.0625 22.4062 18.8906
+L15.7188 20.2188
+Q12.3594 20.9531 9.59375 22.4531
+Q6.84375 23.9688 5.07812 26.4844
+Q3.32812 29 3.32812 32.3281
+Q3.32812 36.7188 5.64062 39.5156
+Q7.95312 42.3281 11.6562 43.5781
+Q15.375 44.8281 19.6719 44.8281
+Q24.8125 44.8281 28.6094 42.0938
+L31.5 44.5781
+Q31.5 44.8281 31.9844 44.8281
+L32.7188 44.8281
+Q33.0156 44.8281 33.25 44.5469
+Q33.5 44.2812 33.5 44
+L33.5 30.9062
+Q33.5 29.9844 32.7188 29.9844
+L31.5 29.9844
+Q30.6094 29.9844 30.6094 30.9062
+Q30.6094 36.1406 27.7031 39.3125
+Q24.8125 42.4844 19.5781 42.4844
+Q15.0938 42.4844 11.7969 40.8125
+Q8.5 39.1562 8.5 35.1094
+Q8.5 32.3281 10.8594 30.5469
+Q13.2344 28.7656 16.4062 27.9844
+L23.1875 26.7031
+Q26.6094 25.9219 29.5625 24.0625
+Q32.5156 22.2188 34.25 19.375
+Q35.9844 16.5469 35.9844 12.9844
+Q35.9844 9.375 34.7344 6.70312
+Q33.5 4.04688 31.2656 2.28125
+Q29.0469 0.53125 26.0156 -0.296875
+Q23 -1.125 19.6719 -1.125
+Q13.4219 -1.125 8.98438 3.07812
+L5.32812 -0.875
+Q5.32812 -1.125 4.78125 -1.125
+L4.20312 -1.125
+Q3.32812 -1.125 3.32812 -0.296875" id="Cmr10-73"/>
+     <path d="
+M3.07812 0
+L3.07812 3.51562
+Q6.5 3.51562 8.6875 4.04688
+Q10.8906 4.59375 10.8906 6.6875
+L10.8906 33.9844
+Q10.8906 37.8438 9.39062 38.7188
+Q7.90625 39.5938 3.51562 39.5938
+L3.51562 43.1094
+L17.9219 44.1875
+L17.9219 6.6875
+Q17.9219 4.59375 19.8281 4.04688
+Q21.7344 3.51562 24.9062 3.51562
+L24.9062 0
+z
+
+M7.32812 61.375
+Q7.32812 63.5781 8.98438 65.2344
+Q10.6406 66.8906 12.7969 66.8906
+Q14.2031 66.8906 15.5156 66.1562
+Q16.8438 65.4375 17.5781 64.1094
+Q18.3125 62.7969 18.3125 61.375
+Q18.3125 59.2344 16.6406 57.5625
+Q14.9844 55.9062 12.7969 55.9062
+Q10.6406 55.9062 8.98438 57.5625
+Q7.32812 59.2344 7.32812 61.375" id="Cmr10-69"/>
+    </defs>
+    <g transform="translate(234.43 44.4)scale(0.2 -0.2)">
+     <use transform="translate(0.0 0.484375)" xlink:href="#Cmmi10-72"/>
+     <use transform="translate(45.1171875 0.484375)" xlink:href="#Cmr10-73"/>
+     <use transform="translate(84.521484375 0.484375)" xlink:href="#Cmr10-69"/>
+     <use transform="translate(112.20703125 0.484375)" xlink:href="#Cmr10-6e"/>
+     <use transform="translate(167.724609375 0.484375)" xlink:href="#Cmmi10-23"/>
+    </g>
+   </g>
+  </g>
+ </g>
+ <defs>
+  <clipPath id="p4db4202fc0">
+   <rect height="334.8" width="446.4" x="33.55" y="7.2"/>
+  </clipPath>
+ </defs>
+</svg>
diff --git a/docs/figures/Coordinates_19_0.svg b/docs/figures/Coordinates_19_0.svg
new file mode 100644
index 0000000000000000000000000000000000000000..cbe17eeb56b5499de1dabfda77d91ff24bbe146d
--- /dev/null
+++ b/docs/figures/Coordinates_19_0.svg
@@ -0,0 +1,763 @@
+<?xml version="1.0" encoding="utf-8" standalone="no"?>
+<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
+  "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
+<!-- Created with matplotlib (http://matplotlib.org/) -->
+<svg height="362pt" version="1.1" viewBox="0 0 494 362" width="494pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
+ <defs>
+  <style type="text/css">
+*{stroke-linecap:butt;stroke-linejoin:round;}
+  </style>
+ </defs>
+ <g id="figure_1">
+  <g id="patch_1">
+   <path d="
+M0 362.878
+L494.43 362.878
+L494.43 0
+L0 0
+z
+" style="fill:none;"/>
+  </g>
+  <g id="axes_1">
+   <g id="patch_2">
+    <path clip-path="url(#p4db4202fc0)" d="
+M218.218 180.531
+C213.231 175.649 207.551 171.823 201.435 169.226
+C195.318 166.629 188.859 165.3 182.35 165.3" style="fill:none;stroke:#000000;"/>
+   </g>
+   <g id="patch_3">
+    <path clip-path="url(#p4db4202fc0)" d="
+M142.924 261.947
+C157.376 266.463 174.502 268.361 191.417 267.323
+C208.332 266.284 224.031 262.371 235.869 256.241" style="fill:none;stroke:#000000;"/>
+   </g>
+   <g id="patch_4">
+    <path clip-path="url(#p4db4202fc0)" d="
+M260.063 96.919
+C267.616 94.7252 274.365 92.2199 280.16 89.4588
+C285.955 86.6977 290.753 83.7016 294.447 80.5373" style="fill:none;stroke:#000000;"/>
+   </g>
+   <g id="patch_5">
+    <path clip-path="url(#p4db4202fc0)" d="
+M303.25 64.86
+C303.25 59.3643 300.123 53.9221 294.047 48.8447
+C287.971 43.7673 279.066 39.1536 267.839 35.2676
+C256.613 31.3815 243.284 28.2988 228.616 26.1956
+C213.949 24.0925 198.226 23.01 182.35 23.01
+C166.474 23.01 150.751 24.0925 136.084 26.1956
+C121.416 28.2988 108.087 31.3815 96.8608 35.2676
+C85.6344 39.1536 76.7286 43.7673 70.653 48.8447
+C64.5773 53.9221 61.45 59.3643 61.45 64.86
+C61.45 70.3557 64.5773 75.7979 70.653 80.8753
+C76.7286 85.9527 85.6344 90.5664 96.8608 94.4524
+C108.087 98.3385 121.416 101.421 136.084 103.524
+C150.751 105.627 166.474 106.71 182.35 106.71
+C198.226 106.71 213.949 105.627 228.616 103.524
+C243.284 101.421 256.613 98.3385 267.839 94.4524
+C279.066 90.5664 287.971 85.9527 294.047 80.8753
+C300.123 75.7979 303.25 70.3557 303.25 64.86" style="fill:none;stroke:#000000;"/>
+   </g>
+   <g id="patch_6">
+    <path clip-path="url(#p4db4202fc0)" d="
+M303.25 64.86
+C303.25 61.8136 302.289 58.7762 300.384 55.802
+C298.479 52.8278 295.642 49.9344 291.923 47.1734" style="fill:none;stroke:#000000;"/>
+   </g>
+   <g id="patch_7">
+    <path clip-path="url(#p4db4202fc0)" d="
+M294.288 81.8538
+C289.534 78.2714 284.61 74.9192 279.535 71.8089
+C274.459 68.6986 269.237 65.8338 263.887 63.2243" style="fill:none;stroke:#000000;"/>
+   </g>
+   <g id="line2d_1">
+    <path clip-path="url(#p4db4202fc0)" d="
+M182.35 230.4
+L442.75 230.4" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:2;"/>
+   </g>
+   <g id="line2d_2">
+    <path clip-path="url(#p4db4202fc0)" d="
+M182.35 230.4
+L70.75 323.4" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:2;"/>
+   </g>
+   <g id="line2d_3">
+    <path clip-path="url(#p4db4202fc0)" d="
+M182.35 230.4
+L182.35 44.4" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:2;"/>
+   </g>
+   <g id="line2d_4">
+    <path clip-path="url(#p4db4202fc0)" d="
+M182.35 230.4
+L293.95 81.6" style="fill:none;stroke:#0000ff;stroke-linecap:square;stroke-width:2;"/>
+   </g>
+   <g id="line2d_5">
+    <path clip-path="url(#p4db4202fc0)" d="
+M293.95 81.6
+L316.27 51.84" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+   </g>
+   <g id="line2d_6">
+    <path clip-path="url(#p4db4202fc0)" d="
+M293.95 81.6
+L293.95 286.2" style="fill:none;stroke:#ff0000;stroke-dasharray:6.000000,6.000000;stroke-dashoffset:0.0;"/>
+   </g>
+   <g id="line2d_7">
+    <path clip-path="url(#p4db4202fc0)" d="
+M182.35 230.4
+L293.95 286.2" style="fill:none;stroke:#0000ff;stroke-dasharray:6.000000,6.000000;stroke-dashoffset:0.0;"/>
+   </g>
+   <g id="line2d_8">
+    <path clip-path="url(#p4db4202fc0)" d="
+M115.39 286.2
+L293.95 286.2" style="fill:none;stroke:#ff0000;stroke-dasharray:6.000000,6.000000;stroke-dashoffset:0.0;"/>
+   </g>
+   <g id="line2d_9">
+    <path clip-path="url(#p4db4202fc0)" d="
+M293.95 286.2
+L360.91 230.4" style="fill:none;stroke:#ff0000;stroke-dasharray:6.000000,6.000000;stroke-dashoffset:0.0;"/>
+   </g>
+   <g id="line2d_10">
+    <path clip-path="url(#p4db4202fc0)" d="
+M293.95 81.6
+L234.43 77.88" style="fill:none;stroke:#ff0000;stroke-linecap:square;stroke-width:3;"/>
+   </g>
+   <g id="line2d_11">
+    <path clip-path="url(#p4db4202fc0)" d="
+M234.43 77.88
+L245.59 100.2" style="fill:none;stroke:#000000;stroke-dasharray:6.000000,6.000000;stroke-dashoffset:0.0;"/>
+   </g>
+   <g id="line2d_12">
+    <path clip-path="url(#p4db4202fc0)" d="
+M293.95 81.6
+L264.19 48.12" style="fill:none;stroke:#008000;stroke-linecap:square;stroke-width:3;"/>
+   </g>
+   <g id="line2d_13">
+    <path clip-path="url(#p4db4202fc0)" d="
+M182.35 72.3
+L100.51 94.62" style="fill:none;stroke:#000000;stroke-linecap:square;"/>
+   </g>
+   <g id="text_1">
+    <!-- $\vartheta$ -->
+    <defs>
+     <path d="
+M10.5 10.2969
+Q10.5 13.5781 11.5312 17.2812
+L15.2812 32.4219
+Q16.0156 35.2031 16.0156 37.3125
+Q16.0156 41.6094 13.0938 41.6094
+Q9.96875 41.6094 8.45312 37.8594
+Q6.9375 34.125 5.51562 28.4219
+Q5.51562 28.125 5.21875 27.9531
+Q4.9375 27.7812 4.6875 27.7812
+L3.51562 27.7812
+Q3.17188 27.7812 2.92188 28.1406
+Q2.6875 28.5156 2.6875 28.8125
+Q3.76562 33.1562 4.76562 36.1719
+Q5.76562 39.2031 7.89062 41.6875
+Q10.0156 44.1875 13.1875 44.1875
+Q17.2812 44.1875 19.9844 41.5938
+Q22.7031 39.0156 22.7031 35.0156
+Q22.7031 33.5938 22.4062 32.1719
+L18.6094 17.0938
+Q17.4375 12.5938 17.2812 9.1875
+Q17.2812 1.51562 24.7031 1.51562
+Q29.2031 1.51562 33.0312 7.6875
+Q36.8594 13.875 39.2812 21.1719
+Q41.7031 28.4688 43.4062 35.2969
+Q27 40.7188 27 52.0938
+Q27 56.1562 28.9688 60.4531
+Q30.9531 64.75 34.4219 67.625
+Q37.8906 70.5156 42 70.5156
+Q45.4062 70.5156 47.6719 68.5
+Q49.9531 66.5 51.1719 63.4219
+Q52.3906 60.3594 52.8594 57.0781
+Q53.3281 53.8125 53.3281 50.4844
+Q53.3281 44.2812 51.4219 35.7969
+Q52.3438 35.5938 53.4219 35.3906
+Q54.5 35.2031 55.3438 34.8594
+Q56.2031 34.5156 56.2031 33.8906
+Q55.9531 32.3281 54.9844 32.3281
+Q54.2969 32.4688 53.2188 32.6875
+Q52.1562 32.9062 50.6875 33.2031
+Q48.9688 26.5625 45.2031 18.625
+Q41.4531 10.6875 36.0625 4.78125
+Q30.6719 -1.125 24.6094 -1.125
+Q18.2656 -1.125 14.375 1.53125
+Q10.5 4.20312 10.5 10.2969
+M44 37.7969
+Q46.9219 49.2656 46.9219 56.2969
+Q46.9219 67.9219 41.7969 67.9219
+Q38.4844 67.9219 35.7656 65.375
+Q33.0625 62.8438 31.4688 59.1562
+Q29.8906 55.4688 29.8906 52.2969
+Q29.8906 42.9688 44 37.7969" id="Cmmi10-23"/>
+    </defs>
+    <g transform="translate(200.95 161.58)scale(0.2 -0.2)">
+     <use transform="translate(0.0 0.484375)" xlink:href="#Cmmi10-23"/>
+    </g>
+   </g>
+   <g id="text_2">
+    <!-- $\varphi$ -->
+    <defs>
+     <path d="
+M16.3125 -19
+Q16.3125 -18.6094 16.5 -17.8281
+L22.125 -0.203125
+Q14.6562 1.65625 9.8125 6.6875
+Q4.98438 11.7188 4.98438 19
+Q4.98438 22.6562 6.34375 27.25
+Q7.71875 31.8438 9.85938 35.9688
+Q12.0156 40.0938 14.5 42.8281
+Q15.0938 43.1094 15.1875 43.1094
+L16.4062 43.1094
+Q16.7031 43.1094 16.9375 42.8125
+Q17.1875 42.5312 17.1875 42.1875
+Q17.1875 41.7969 17 41.6094
+Q15.3281 39.7969 13.7344 37.1875
+Q12.1562 34.5781 10.9062 31.6875
+Q9.67188 28.8125 8.84375 25.6406
+Q8.01562 22.4688 8.01562 20.125
+Q8.01562 14.2031 12.7188 10.5625
+Q17.4375 6.9375 23.875 5.71875
+L26.7031 14.7031
+Q28.5625 20.5156 30.3906 25.0781
+Q32.2344 29.6406 34.9844 34
+Q37.75 38.375 41.6562 41.2812
+Q45.5625 44.1875 50.3906 44.1875
+Q54.2031 44.1875 56.7656 42.2812
+Q59.3281 40.375 60.5625 37.2031
+Q61.8125 34.0312 61.8125 30.4219
+Q61.8125 24.4688 59.1719 18.7812
+Q56.5469 13.0938 51.9531 8.5625
+Q47.3594 4.04688 41.5938 1.45312
+Q35.8438 -1.125 29.9844 -1.125
+Q29.2031 -1.07812 28.2969 -1.03125
+Q27.3906 -0.984375 26.8125 -0.984375
+L23.4844 -18.4062
+Q23.1875 -19.875 21.9844 -20.8281
+Q20.7969 -21.7812 19.2812 -21.7812
+Q18.0625 -21.7812 17.1875 -21.0156
+Q16.3125 -20.2656 16.3125 -19
+M27.875 5.17188
+Q29 5.07812 31.1094 5.07812
+Q37.3125 5.07812 43.7188 8.125
+Q50.1406 11.1875 54.3594 16.5
+Q58.5938 21.8281 58.5938 28.0781
+Q58.5938 30.9062 57.4375 33.1562
+Q56.2969 35.4062 54.2188 36.6875
+Q52.1562 37.9844 49.4219 37.9844
+Q41.6562 37.9844 36.4219 30.4688
+Q31.2031 22.9531 29.5938 14.3125
+z
+" id="Cmmi10-27"/>
+    </defs>
+    <g transform="translate(204.67 276.9)scale(0.2 -0.2)">
+     <use transform="translate(0.0 0.8125)" xlink:href="#Cmmi10-27"/>
+    </g>
+   </g>
+   <g id="text_3">
+    <!-- $y$ -->
+    <defs>
+     <path d="
+M8.40625 -14.3125
+Q10.5 -17.9219 15.7188 -17.9219
+Q20.4531 -17.9219 23.9219 -14.5938
+Q27.3906 -11.2812 29.5156 -6.5625
+Q31.6406 -1.85938 32.8125 3.07812
+Q28.375 -1.125 23.1875 -1.125
+Q19.2344 -1.125 16.4531 0.234375
+Q13.6719 1.60938 12.125 4.3125
+Q10.5938 7.03125 10.5938 10.8906
+Q10.5938 14.1562 11.4688 17.5938
+Q12.3594 21.0469 13.9375 25.2656
+Q15.5312 29.5 16.7031 32.625
+Q18.0156 36.2812 18.0156 38.625
+Q18.0156 41.6094 15.8281 41.6094
+Q11.8594 41.6094 9.29688 37.5312
+Q6.73438 33.4531 5.51562 28.4219
+Q5.32812 27.7812 4.6875 27.7812
+L3.51562 27.7812
+Q2.6875 27.7812 2.6875 28.7188
+L2.6875 29
+Q4.29688 34.9688 7.60938 39.5781
+Q10.9375 44.1875 16.0156 44.1875
+Q19.5781 44.1875 22.0469 41.8438
+Q24.5156 39.5 24.5156 35.8906
+Q24.5156 34.0312 23.6875 31.9844
+Q23.25 30.7656 21.6875 26.6562
+Q20.125 22.5625 19.2812 19.875
+Q18.4531 17.1875 17.9219 14.5938
+Q17.3906 12.0156 17.3906 9.42188
+Q17.3906 6.10938 18.7969 3.8125
+Q20.2188 1.51562 23.2969 1.51562
+Q29.5 1.51562 34.4219 9.07812
+L42 39.8906
+Q42.3281 41.2188 43.5469 42.1562
+Q44.7812 43.1094 46.1875 43.1094
+Q47.4062 43.1094 48.3125 42.3281
+Q49.2188 41.5469 49.2188 40.2812
+Q49.2188 39.7031 49.125 39.5
+L39.2031 -0.296875
+Q37.8906 -5.42188 34.375 -10.1094
+Q30.8594 -14.7969 25.9062 -17.6562
+Q20.9531 -20.5156 15.5781 -20.5156
+Q12.9844 -20.5156 10.4375 -19.5
+Q7.90625 -18.5 6.34375 -16.5
+Q4.78125 -14.5 4.78125 -11.8125
+Q4.78125 -9.07812 6.39062 -7.07812
+Q8.01562 -5.07812 10.6875 -5.07812
+Q12.3125 -5.07812 13.4062 -6.07812
+Q14.5 -7.07812 14.5 -8.6875
+Q14.5 -10.9844 12.7812 -12.6875
+Q11.0781 -14.4062 8.79688 -14.4062
+Q8.6875 -14.3594 8.59375 -14.3281
+Q8.5 -14.3125 8.40625 -14.3125" id="Cmmi10-79"/>
+    </defs>
+    <g transform="translate(331.15 222.96)scale(0.2 -0.2)">
+     <use transform="translate(0.0 0.8125)" xlink:href="#Cmmi10-79"/>
+    </g>
+   </g>
+   <g id="text_4">
+    <!-- $x$ -->
+    <defs>
+     <path d="
+M7.8125 2.875
+Q9.57812 1.51562 12.7969 1.51562
+Q15.9219 1.51562 18.3125 4.51562
+Q20.7031 7.51562 21.5781 11.0781
+L26.125 28.8125
+Q27.2031 33.6406 27.2031 35.4062
+Q27.2031 37.8906 25.8125 39.75
+Q24.4219 41.6094 21.9219 41.6094
+Q18.75 41.6094 15.9688 39.625
+Q13.1875 37.6406 11.2812 34.5938
+Q9.375 31.5469 8.59375 28.4219
+Q8.40625 27.7812 7.8125 27.7812
+L6.59375 27.7812
+Q5.8125 27.7812 5.8125 28.7188
+L5.8125 29
+Q6.78125 32.7188 9.125 36.25
+Q11.4688 39.7969 14.8594 41.9844
+Q18.2656 44.1875 22.125 44.1875
+Q25.7812 44.1875 28.7344 42.2344
+Q31.6875 40.2812 32.9062 36.9219
+Q34.625 39.9844 37.2812 42.0781
+Q39.9375 44.1875 43.1094 44.1875
+Q45.2656 44.1875 47.5 43.4219
+Q49.75 42.6719 51.1719 41.1094
+Q52.5938 39.5469 52.5938 37.2031
+Q52.5938 34.6719 50.9531 32.8281
+Q49.3125 31 46.7812 31
+Q45.1719 31 44.0938 32.0312
+Q43.0156 33.0625 43.0156 34.625
+Q43.0156 36.7188 44.4531 38.2969
+Q45.9062 39.8906 47.9062 40.1875
+Q46.0938 41.6094 42.9219 41.6094
+Q39.7031 41.6094 37.3281 38.625
+Q34.9688 35.6406 33.9844 31.9844
+L29.5938 14.3125
+Q28.5156 10.2969 28.5156 7.71875
+Q28.5156 5.17188 29.9531 3.34375
+Q31.3906 1.51562 33.7969 1.51562
+Q38.4844 1.51562 42.1562 5.64062
+Q45.8438 9.76562 47.0156 14.7031
+Q47.2188 15.2812 47.7969 15.2812
+L49.0312 15.2812
+Q49.4219 15.2812 49.6562 15.0156
+Q49.9062 14.75 49.9062 14.4062
+Q49.9062 14.3125 49.8125 14.1094
+Q48.3906 8.15625 43.8438 3.51562
+Q39.3125 -1.125 33.5938 -1.125
+Q29.9375 -1.125 26.9844 0.84375
+Q24.0312 2.82812 22.7969 6.20312
+Q21.2344 3.26562 18.4688 1.0625
+Q15.7188 -1.125 12.5938 -1.125
+Q10.4531 -1.125 8.17188 -0.359375
+Q5.90625 0.390625 4.48438 1.95312
+Q3.07812 3.51562 3.07812 5.90625
+Q3.07812 8.25 4.70312 10.1719
+Q6.34375 12.1094 8.79688 12.1094
+Q10.4531 12.1094 11.5781 11.1094
+Q12.7031 10.1094 12.7031 8.5
+Q12.7031 6.39062 11.2969 4.82812
+Q9.90625 3.26562 7.8125 2.875" id="Cmmi10-78"/>
+    </defs>
+    <g transform="translate(115.39 267.6)scale(0.2 -0.2)">
+     <use transform="translate(0.0 0.8125)" xlink:href="#Cmmi10-78"/>
+    </g>
+   </g>
+   <g id="text_5">
+    <!-- $z$ -->
+    <defs>
+     <path d="
+M4.89062 -1.125
+Q4.10938 -1.125 4.10938 -0.203125
+Q4.10938 0.296875 4.29688 0.484375
+Q6.98438 5.125 10.7656 9.34375
+Q14.5469 13.5781 19.3594 17.8906
+Q24.1719 22.2188 29.0312 26.5625
+Q33.8906 30.9062 36.9219 34.2812
+L36.5312 34.2812
+Q34.3281 34.2812 30.0781 35.6875
+Q25.8281 37.1094 23.3906 37.1094
+Q20.75 37.1094 18.25 35.9531
+Q15.7656 34.8125 15.0938 32.4219
+Q14.9375 31.6875 14.3125 31.6875
+L13.0938 31.6875
+Q12.3125 31.6875 12.3125 32.7188
+L12.3125 33.0156
+Q13.0938 35.9375 14.875 38.4688
+Q16.6562 41.0156 19.2656 42.5938
+Q21.875 44.1875 24.7031 44.1875
+Q26.7031 44.1875 28.0156 43.2812
+Q29.3438 42.3906 31.0938 40.4844
+Q32.8594 38.5781 33.9531 37.75
+Q35.0625 36.9219 36.7188 36.9219
+Q38.9219 36.9219 40.6562 38.9219
+Q42.3906 40.9219 44.0938 43.8906
+Q44.3906 44.1875 44.8281 44.1875
+L46 44.1875
+Q46.3438 44.1875 46.5625 43.9375
+Q46.7812 43.7031 46.7812 43.3125
+Q46.7812 42.9688 46.5781 42.6719
+Q43.8906 38.0312 40.2969 34
+Q36.7188 29.9844 30.9219 24.7812
+Q25.1406 19.5781 21.1562 15.9844
+Q17.1875 12.4062 13.7188 8.59375
+Q14.5 8.79688 15.8281 8.79688
+Q18.2656 8.79688 22.4844 7.39062
+Q26.7031 6 29 6
+Q31.5 6 34.0312 7.07812
+Q36.5781 8.15625 38.4219 10.1094
+Q40.2812 12.0625 40.9219 14.5938
+Q41.1562 15.2812 41.7031 15.2812
+L42.9219 15.2812
+Q43.3125 15.2812 43.5469 14.9688
+Q43.7969 14.6562 43.7969 14.3125
+Q43.7969 14.2031 43.7031 14.0156
+Q42.7812 10.2031 40.4844 6.76562
+Q38.1875 3.32812 34.8438 1.09375
+Q31.5 -1.125 27.6875 -1.125
+Q25.7812 -1.125 24.4531 -0.234375
+Q23.1406 0.640625 21.3594 2.5625
+Q19.5781 4.5 18.4531 5.34375
+Q17.3281 6.20312 15.7188 6.20312
+Q10.75 6.20312 6.78125 -0.78125
+Q6.45312 -1.125 6.10938 -1.125
+z
+" id="Cmmi10-7a"/>
+    </defs>
+    <g transform="translate(301.39 196.92)scale(0.2 -0.2)">
+     <use transform="translate(0.0 0.8125)" xlink:href="#Cmmi10-7a"/>
+    </g>
+   </g>
+   <g id="text_6">
+    <g id="patch_8">
+     <path d="
+M195.23 102.639
+L230.63 102.639
+L230.63 79.2831
+L195.23 79.2831
+z
+" style="fill:#ffffff;stroke:#ffffff;"/>
+    </g>
+    <!-- $r d\vartheta$ -->
+    <defs>
+     <path d="
+M7.71875 1.70312
+Q7.71875 2.29688 7.8125 2.59375
+L15.2812 32.4219
+Q16.0156 35.2031 16.0156 37.3125
+Q16.0156 41.6094 13.0938 41.6094
+Q9.96875 41.6094 8.45312 37.8594
+Q6.9375 34.125 5.51562 28.4219
+Q5.51562 28.125 5.21875 27.9531
+Q4.9375 27.7812 4.6875 27.7812
+L3.51562 27.7812
+Q3.17188 27.7812 2.92188 28.1406
+Q2.6875 28.5156 2.6875 28.8125
+Q3.76562 33.1562 4.76562 36.1719
+Q5.76562 39.2031 7.89062 41.6875
+Q10.0156 44.1875 13.1875 44.1875
+Q16.6562 44.1875 19.2656 42.1875
+Q21.875 40.1875 22.5156 36.9219
+Q25.0469 40.2344 28.2969 42.2031
+Q31.5469 44.1875 35.4062 44.1875
+Q38.5781 44.1875 40.9844 42.3281
+Q43.4062 40.4844 43.4062 37.3125
+Q43.4062 34.7656 41.8125 32.875
+Q40.2344 31 37.5938 31
+Q35.9844 31 34.8906 32
+Q33.7969 33.0156 33.7969 34.625
+Q33.7969 36.8125 35.4062 38.5469
+Q37.0156 40.2812 39.1094 40.2812
+Q37.5 41.6094 35.2031 41.6094
+Q30.9062 41.6094 27.7344 38.5469
+Q24.5625 35.5 22.0156 30.8125
+L14.8906 2.20312
+Q14.5469 0.828125 13.3438 -0.140625
+Q12.1562 -1.125 10.6875 -1.125
+Q9.46875 -1.125 8.59375 -0.34375
+Q7.71875 0.4375 7.71875 1.70312" id="Cmmi10-72"/>
+     <path d="
+M17.3906 -1.125
+Q11.0781 -1.125 7.4375 3.64062
+Q3.8125 8.40625 3.8125 14.8906
+Q3.8125 21.2969 7.125 28.1719
+Q10.4531 35.0625 16.0938 39.625
+Q21.7344 44.1875 28.2188 44.1875
+Q31.1562 44.1875 33.5156 42.5469
+Q35.8906 40.9219 37.2031 38.1875
+L42.8281 60.5
+Q43.2188 62.2031 43.3125 63.1875
+Q43.3125 64.7969 36.8125 64.7969
+Q35.7969 64.7969 35.7969 66.1094
+Q35.8438 66.3594 36.0156 66.9844
+Q36.1875 67.625 36.4531 67.9688
+Q36.7188 68.3125 37.2031 68.3125
+L50.6875 69.3906
+Q51.9062 69.3906 51.9062 68.1094
+L37.5 10.5938
+Q36.8125 8.9375 36.8125 5.8125
+Q36.8125 1.51562 39.7031 1.51562
+Q42.8281 1.51562 44.4531 5.48438
+Q46.0938 9.46875 47.2188 14.7031
+Q47.4062 15.2812 48 15.2812
+L49.2188 15.2812
+Q49.6094 15.2812 49.8438 14.9375
+Q50.0938 14.5938 50.0938 14.3125
+Q48.3438 7.32812 46.2656 3.09375
+Q44.1875 -1.125 39.5 -1.125
+Q36.1406 -1.125 33.5469 0.84375
+Q30.9531 2.82812 30.3281 6.10938
+Q23.875 -1.125 17.3906 -1.125
+M17.4844 1.51562
+Q21.0938 1.51562 24.4844 4.21875
+Q27.875 6.9375 30.3281 10.5938
+Q30.4219 10.6875 30.4219 10.9844
+L35.8906 33.0156
+Q35.2969 36.5312 33.2969 39.0625
+Q31.2969 41.6094 27.9844 41.6094
+Q24.6094 41.6094 21.7031 38.8438
+Q18.7969 36.0781 16.7969 32.3281
+Q14.8438 28.3281 13.0625 21.3438
+Q11.2812 14.3594 11.2812 10.5
+Q11.2812 7.03125 12.7656 4.26562
+Q14.2656 1.51562 17.4844 1.51562" id="Cmmi10-64"/>
+    </defs>
+    <g transform="translate(197.23 96.48)scale(0.2 -0.2)">
+     <use transform="translate(0.0 0.484375)" xlink:href="#Cmmi10-72"/>
+     <use transform="translate(45.1171875 0.484375)" xlink:href="#Cmmi10-64"/>
+     <use transform="translate(97.119140625 0.484375)" xlink:href="#Cmmi10-23"/>
+    </g>
+   </g>
+   <g id="text_7">
+    <!-- $dr$ -->
+    <g transform="translate(308.83 70.44)scale(0.2 -0.2)">
+     <use transform="translate(0.0 0.609375)" xlink:href="#Cmmi10-64"/>
+     <use transform="translate(52.001953125 0.609375)" xlink:href="#Cmmi10-72"/>
+    </g>
+   </g>
+   <g id="text_8">
+    <g id="patch_9">
+     <path d="
+M254.75 123.34
+L327.75 123.34
+L327.75 99.9837
+L254.75 99.9837
+z
+" style="fill:#ffffff;stroke:#ffffff;"/>
+    </g>
+    <!-- $r \sin\vartheta d\varphi$ -->
+    <defs>
+     <path d="
+M2.98438 0
+L2.98438 3.51562
+Q6.39062 3.51562 8.59375 4.04688
+Q10.7969 4.59375 10.7969 6.6875
+L10.7969 33.9844
+Q10.7969 36.6719 9.98438 37.8594
+Q9.1875 39.0625 7.67188 39.3281
+Q6.15625 39.5938 2.98438 39.5938
+L2.98438 43.1094
+L17.4844 44.1875
+L17.4844 34.4219
+Q19.4844 38.7188 23.4062 41.4531
+Q27.3438 44.1875 31.9844 44.1875
+Q38.9219 44.1875 42.4062 40.8594
+Q45.9062 37.5469 45.9062 30.7188
+L45.9062 6.6875
+Q45.9062 4.59375 48.0938 4.04688
+Q50.2969 3.51562 53.7188 3.51562
+L53.7188 0
+L30.8125 0
+L30.8125 3.51562
+Q34.2344 3.51562 36.4219 4.04688
+Q38.625 4.59375 38.625 6.6875
+L38.625 30.4219
+Q38.625 35.2969 37.2031 38.4531
+Q35.7969 41.6094 31.3906 41.6094
+Q25.5938 41.6094 21.8438 36.9688
+Q18.1094 32.3281 18.1094 26.4219
+L18.1094 6.6875
+Q18.1094 4.59375 20.3125 4.04688
+Q22.5156 3.51562 25.875 3.51562
+L25.875 0
+z
+" id="Cmr10-6e"/>
+     <path d="
+M3.32812 -0.296875
+L3.32812 16.0156
+Q3.32812 16.7969 4.20312 16.7969
+L5.42188 16.7969
+Q6 16.7969 6.20312 16.0156
+Q8.98438 1.51562 19.6719 1.51562
+Q24.4219 1.51562 27.6094 3.65625
+Q30.8125 5.8125 30.8125 10.2969
+Q30.8125 13.5312 28.3125 15.7969
+Q25.8281 18.0625 22.4062 18.8906
+L15.7188 20.2188
+Q12.3594 20.9531 9.59375 22.4531
+Q6.84375 23.9688 5.07812 26.4844
+Q3.32812 29 3.32812 32.3281
+Q3.32812 36.7188 5.64062 39.5156
+Q7.95312 42.3281 11.6562 43.5781
+Q15.375 44.8281 19.6719 44.8281
+Q24.8125 44.8281 28.6094 42.0938
+L31.5 44.5781
+Q31.5 44.8281 31.9844 44.8281
+L32.7188 44.8281
+Q33.0156 44.8281 33.25 44.5469
+Q33.5 44.2812 33.5 44
+L33.5 30.9062
+Q33.5 29.9844 32.7188 29.9844
+L31.5 29.9844
+Q30.6094 29.9844 30.6094 30.9062
+Q30.6094 36.1406 27.7031 39.3125
+Q24.8125 42.4844 19.5781 42.4844
+Q15.0938 42.4844 11.7969 40.8125
+Q8.5 39.1562 8.5 35.1094
+Q8.5 32.3281 10.8594 30.5469
+Q13.2344 28.7656 16.4062 27.9844
+L23.1875 26.7031
+Q26.6094 25.9219 29.5625 24.0625
+Q32.5156 22.2188 34.25 19.375
+Q35.9844 16.5469 35.9844 12.9844
+Q35.9844 9.375 34.7344 6.70312
+Q33.5 4.04688 31.2656 2.28125
+Q29.0469 0.53125 26.0156 -0.296875
+Q23 -1.125 19.6719 -1.125
+Q13.4219 -1.125 8.98438 3.07812
+L5.32812 -0.875
+Q5.32812 -1.125 4.78125 -1.125
+L4.20312 -1.125
+Q3.32812 -1.125 3.32812 -0.296875" id="Cmr10-73"/>
+     <path d="
+M3.07812 0
+L3.07812 3.51562
+Q6.5 3.51562 8.6875 4.04688
+Q10.8906 4.59375 10.8906 6.6875
+L10.8906 33.9844
+Q10.8906 37.8438 9.39062 38.7188
+Q7.90625 39.5938 3.51562 39.5938
+L3.51562 43.1094
+L17.9219 44.1875
+L17.9219 6.6875
+Q17.9219 4.59375 19.8281 4.04688
+Q21.7344 3.51562 24.9062 3.51562
+L24.9062 0
+z
+
+M7.32812 61.375
+Q7.32812 63.5781 8.98438 65.2344
+Q10.6406 66.8906 12.7969 66.8906
+Q14.2031 66.8906 15.5156 66.1562
+Q16.8438 65.4375 17.5781 64.1094
+Q18.3125 62.7969 18.3125 61.375
+Q18.3125 59.2344 16.6406 57.5625
+Q14.9844 55.9062 12.7969 55.9062
+Q10.6406 55.9062 8.98438 57.5625
+Q7.32812 59.2344 7.32812 61.375" id="Cmr10-69"/>
+    </defs>
+    <g transform="translate(256.75 116.94)scale(0.2 -0.2)">
+     <use transform="translate(0.0 0.484375)" xlink:href="#Cmmi10-72"/>
+     <use transform="translate(45.1171875 0.484375)" xlink:href="#Cmr10-73"/>
+     <use transform="translate(84.521484375 0.484375)" xlink:href="#Cmr10-69"/>
+     <use transform="translate(112.20703125 0.484375)" xlink:href="#Cmr10-6e"/>
+     <use transform="translate(167.724609375 0.484375)" xlink:href="#Cmmi10-23"/>
+     <use transform="translate(226.806640625 0.484375)" xlink:href="#Cmmi10-64"/>
+     <use transform="translate(278.80859375 0.484375)" xlink:href="#Cmmi10-27"/>
+    </g>
+   </g>
+   <g id="text_9">
+    <!-- $ds$ -->
+    <defs>
+     <path d="
+M8.6875 6.10938
+Q11.375 1.51562 19.4844 1.51562
+Q23 1.51562 26.1719 2.70312
+Q29.3438 3.90625 31.4219 6.29688
+Q33.5 8.6875 33.5 12.1094
+Q33.5 14.7031 31.6406 16.3594
+Q29.7812 18.0156 27.0938 18.6094
+L21.6875 19.6719
+Q17.9688 20.6094 15.5781 23.1406
+Q13.1875 25.6875 13.1875 29.2969
+Q13.1875 33.7344 15.5938 37.1562
+Q18.0156 40.5781 21.9688 42.375
+Q25.9219 44.1875 30.1719 44.1875
+Q34.7188 44.1875 38.2969 42.0156
+Q41.8906 39.8438 41.8906 35.5938
+Q41.8906 33.2969 40.5938 31.5312
+Q39.3125 29.7812 37.0156 29.7812
+Q35.6875 29.7812 34.7344 30.6406
+Q33.7969 31.5 33.7969 32.8125
+Q33.7969 33.9844 34.4531 35.0781
+Q35.1094 36.1875 36.2031 36.8438
+Q37.3125 37.5 38.4844 37.5
+Q37.5938 39.6562 35.1719 40.625
+Q32.7656 41.6094 29.9844 41.6094
+Q27.4375 41.6094 24.8906 40.5781
+Q22.3594 39.5469 20.8125 37.5625
+Q19.2812 35.5938 19.2812 32.9062
+Q19.2812 31.1094 20.5469 29.7344
+Q21.8281 28.375 23.6875 27.7812
+L29.5 26.6094
+Q32.2812 26.0312 34.5938 24.5312
+Q36.9219 23.0469 38.25 20.7656
+Q39.5938 18.5 39.5938 15.5781
+Q39.5938 11.8594 37.5156 8.25
+Q35.4531 4.64062 32.4219 2.48438
+Q27.0938 -1.125 19.3906 -1.125
+Q14.0625 -1.125 9.60938 1.3125
+Q5.17188 3.76562 5.17188 8.59375
+Q5.17188 11.3281 6.75 13.3438
+Q8.34375 15.375 11.0781 15.375
+Q12.7031 15.375 13.7969 14.3906
+Q14.8906 13.4219 14.8906 11.8125
+Q14.8906 9.51562 13.1719 7.8125
+Q11.4688 6.10938 9.1875 6.10938
+z
+" id="Cmmi10-73"/>
+    </defs>
+    <g style="fill:#008000;" transform="translate(275.35 57.42)scale(0.2 -0.2)">
+     <use transform="translate(0.0 0.609375)" xlink:href="#Cmmi10-64"/>
+     <use transform="translate(52.001953125 0.609375)" xlink:href="#Cmmi10-73"/>
+    </g>
+   </g>
+   <g id="text_10">
+    <!-- $r\sin\varphi$ -->
+    <g transform="translate(107.95 76.02)scale(0.2 -0.2)">
+     <use transform="translate(0.0 0.109375)" xlink:href="#Cmmi10-72"/>
+     <use transform="translate(45.1171875 0.109375)" xlink:href="#Cmr10-73"/>
+     <use transform="translate(84.521484375 0.109375)" xlink:href="#Cmr10-69"/>
+     <use transform="translate(112.20703125 0.109375)" xlink:href="#Cmr10-6e"/>
+     <use transform="translate(167.724609375 0.109375)" xlink:href="#Cmmi10-27"/>
+    </g>
+   </g>
+  </g>
+ </g>
+ <defs>
+  <clipPath id="p4db4202fc0">
+   <rect height="334.8" width="446.4" x="33.55" y="7.2"/>
+  </clipPath>
+ </defs>
+</svg>
diff --git a/docs/figures/Coordinates_5_0.svg b/docs/figures/Coordinates_5_0.svg
new file mode 100644
index 0000000000000000000000000000000000000000..880c83d724d81df0fc1f6a3d0e82165e90e2246b
--- /dev/null
+++ b/docs/figures/Coordinates_5_0.svg
@@ -0,0 +1,540 @@
+<?xml version="1.0" encoding="utf-8" standalone="no"?>
+<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
+  "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
+<!-- Created with matplotlib (http://matplotlib.org/) -->
+<svg height="256pt" version="1.1" viewBox="0 0 374 256" width="374pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
+ <defs>
+  <style type="text/css">
+*{stroke-linecap:butt;stroke-linejoin:round;}
+  </style>
+ </defs>
+ <g id="figure_1">
+  <g id="patch_1">
+   <path d="
+M0 256.117
+L374.953 256.117
+L374.953 0
+L0 0
+z
+" style="fill:none;"/>
+  </g>
+  <g id="axes_1">
+   <g id="patch_2">
+    <path d="
+M25.8828 235.239
+L360.683 235.239
+L360.683 12.0391
+L25.8828 12.0391
+z
+" style="fill:none;"/>
+   </g>
+   <g id="matplotlib.axis_1">
+    <g id="xtick_1">
+     <g id="line2d_1">
+      <path clip-path="url(#p2650e7d7b6)" d="
+M25.8828 235.239
+L25.8828 12.0391" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_2">
+      <defs>
+       <path d="
+M0 0
+L0 -4" id="m93b0483c22" style="stroke:#000000;stroke-width:0.5;"/>
+      </defs>
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="25.8828125" xlink:href="#m93b0483c22" y="235.2390625"/>
+      </g>
+     </g>
+     <g id="line2d_3">
+      <defs>
+       <path d="
+M0 0
+L0 4" id="m741efc42ff" style="stroke:#000000;stroke-width:0.5;"/>
+      </defs>
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="25.8828125" xlink:href="#m741efc42ff" y="12.0390625"/>
+      </g>
+     </g>
+     <g id="text_1">
+      <!-- 0.0 -->
+      <defs>
+       <path d="
+M31.7812 66.4062
+Q24.1719 66.4062 20.3281 58.9062
+Q16.5 51.4219 16.5 36.375
+Q16.5 21.3906 20.3281 13.8906
+Q24.1719 6.39062 31.7812 6.39062
+Q39.4531 6.39062 43.2812 13.8906
+Q47.125 21.3906 47.125 36.375
+Q47.125 51.4219 43.2812 58.9062
+Q39.4531 66.4062 31.7812 66.4062
+M31.7812 74.2188
+Q44.0469 74.2188 50.5156 64.5156
+Q56.9844 54.8281 56.9844 36.375
+Q56.9844 17.9688 50.5156 8.26562
+Q44.0469 -1.42188 31.7812 -1.42188
+Q19.5312 -1.42188 13.0625 8.26562
+Q6.59375 17.9688 6.59375 36.375
+Q6.59375 54.8281 13.0625 64.5156
+Q19.5312 74.2188 31.7812 74.2188" id="DejaVuSans-30"/>
+       <path d="
+M10.6875 12.4062
+L21 12.4062
+L21 0
+L10.6875 0
+z
+" id="DejaVuSans-2e"/>
+      </defs>
+      <g transform="translate(18.59296875 246.8375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_2">
+     <g id="line2d_4">
+      <path clip-path="url(#p2650e7d7b6)" d="
+M92.8428 235.239
+L92.8428 12.0391" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_5">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="92.8428125" xlink:href="#m93b0483c22" y="235.2390625"/>
+      </g>
+     </g>
+     <g id="line2d_6">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="92.8428125" xlink:href="#m741efc42ff" y="12.0390625"/>
+      </g>
+     </g>
+     <g id="text_2">
+      <!-- 0.2 -->
+      <defs>
+       <path d="
+M19.1875 8.29688
+L53.6094 8.29688
+L53.6094 0
+L7.32812 0
+L7.32812 8.29688
+Q12.9375 14.1094 22.625 23.8906
+Q32.3281 33.6875 34.8125 36.5312
+Q39.5469 41.8438 41.4219 45.5312
+Q43.3125 49.2188 43.3125 52.7812
+Q43.3125 58.5938 39.2344 62.25
+Q35.1562 65.9219 28.6094 65.9219
+Q23.9688 65.9219 18.8125 64.3125
+Q13.6719 62.7031 7.8125 59.4219
+L7.8125 69.3906
+Q13.7656 71.7812 18.9375 73
+Q24.125 74.2188 28.4219 74.2188
+Q39.75 74.2188 46.4844 68.5469
+Q53.2188 62.8906 53.2188 53.4219
+Q53.2188 48.9219 51.5312 44.8906
+Q49.8594 40.875 45.4062 35.4062
+Q44.1875 33.9844 37.6406 27.2188
+Q31.1094 20.4531 19.1875 8.29688" id="DejaVuSans-32"/>
+      </defs>
+      <g transform="translate(85.72171875 246.8375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-32"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_3">
+     <g id="line2d_7">
+      <path clip-path="url(#p2650e7d7b6)" d="
+M159.803 235.239
+L159.803 12.0391" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_8">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="159.8028125" xlink:href="#m93b0483c22" y="235.2390625"/>
+      </g>
+     </g>
+     <g id="line2d_9">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="159.8028125" xlink:href="#m741efc42ff" y="12.0390625"/>
+      </g>
+     </g>
+     <g id="text_3">
+      <!-- 0.4 -->
+      <defs>
+       <path d="
+M37.7969 64.3125
+L12.8906 25.3906
+L37.7969 25.3906
+z
+
+M35.2031 72.9062
+L47.6094 72.9062
+L47.6094 25.3906
+L58.0156 25.3906
+L58.0156 17.1875
+L47.6094 17.1875
+L47.6094 0
+L37.7969 0
+L37.7969 17.1875
+L4.89062 17.1875
+L4.89062 26.7031
+z
+" id="DejaVuSans-34"/>
+      </defs>
+      <g transform="translate(152.46140625 246.8375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-34"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_4">
+     <g id="line2d_10">
+      <path clip-path="url(#p2650e7d7b6)" d="
+M226.763 235.239
+L226.763 12.0391" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_11">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="226.7628125" xlink:href="#m93b0483c22" y="235.2390625"/>
+      </g>
+     </g>
+     <g id="line2d_12">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="226.7628125" xlink:href="#m741efc42ff" y="12.0390625"/>
+      </g>
+     </g>
+     <g id="text_4">
+      <!-- 0.6 -->
+      <defs>
+       <path d="
+M33.0156 40.375
+Q26.375 40.375 22.4844 35.8281
+Q18.6094 31.2969 18.6094 23.3906
+Q18.6094 15.5312 22.4844 10.9531
+Q26.375 6.39062 33.0156 6.39062
+Q39.6562 6.39062 43.5312 10.9531
+Q47.4062 15.5312 47.4062 23.3906
+Q47.4062 31.2969 43.5312 35.8281
+Q39.6562 40.375 33.0156 40.375
+M52.5938 71.2969
+L52.5938 62.3125
+Q48.875 64.0625 45.0938 64.9844
+Q41.3125 65.9219 37.5938 65.9219
+Q27.8281 65.9219 22.6719 59.3281
+Q17.5312 52.7344 16.7969 39.4062
+Q19.6719 43.6562 24.0156 45.9219
+Q28.375 48.1875 33.5938 48.1875
+Q44.5781 48.1875 50.9531 41.5156
+Q57.3281 34.8594 57.3281 23.3906
+Q57.3281 12.1562 50.6875 5.35938
+Q44.0469 -1.42188 33.0156 -1.42188
+Q20.3594 -1.42188 13.6719 8.26562
+Q6.98438 17.9688 6.98438 36.375
+Q6.98438 53.6562 15.1875 63.9375
+Q23.3906 74.2188 37.2031 74.2188
+Q40.9219 74.2188 44.7031 73.4844
+Q48.4844 72.75 52.5938 71.2969" id="DejaVuSans-36"/>
+      </defs>
+      <g transform="translate(219.45578125 246.8375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-36"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_5">
+     <g id="line2d_13">
+      <path clip-path="url(#p2650e7d7b6)" d="
+M293.723 235.239
+L293.723 12.0391" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_14">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="293.7228125" xlink:href="#m93b0483c22" y="235.2390625"/>
+      </g>
+     </g>
+     <g id="line2d_15">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="293.7228125" xlink:href="#m741efc42ff" y="12.0390625"/>
+      </g>
+     </g>
+     <g id="text_5">
+      <!-- 0.8 -->
+      <defs>
+       <path d="
+M31.7812 34.625
+Q24.75 34.625 20.7188 30.8594
+Q16.7031 27.0938 16.7031 20.5156
+Q16.7031 13.9219 20.7188 10.1562
+Q24.75 6.39062 31.7812 6.39062
+Q38.8125 6.39062 42.8594 10.1719
+Q46.9219 13.9688 46.9219 20.5156
+Q46.9219 27.0938 42.8906 30.8594
+Q38.875 34.625 31.7812 34.625
+M21.9219 38.8125
+Q15.5781 40.375 12.0312 44.7188
+Q8.5 49.0781 8.5 55.3281
+Q8.5 64.0625 14.7188 69.1406
+Q20.9531 74.2188 31.7812 74.2188
+Q42.6719 74.2188 48.875 69.1406
+Q55.0781 64.0625 55.0781 55.3281
+Q55.0781 49.0781 51.5312 44.7188
+Q48 40.375 41.7031 38.8125
+Q48.8281 37.1562 52.7969 32.3125
+Q56.7812 27.4844 56.7812 20.5156
+Q56.7812 9.90625 50.3125 4.23438
+Q43.8438 -1.42188 31.7812 -1.42188
+Q19.7344 -1.42188 13.25 4.23438
+Q6.78125 9.90625 6.78125 20.5156
+Q6.78125 27.4844 10.7812 32.3125
+Q14.7969 37.1562 21.9219 38.8125
+M18.3125 54.3906
+Q18.3125 48.7344 21.8438 45.5625
+Q25.3906 42.3906 31.7812 42.3906
+Q38.1406 42.3906 41.7188 45.5625
+Q45.3125 48.7344 45.3125 54.3906
+Q45.3125 60.0625 41.7188 63.2344
+Q38.1406 66.4062 31.7812 66.4062
+Q25.3906 66.4062 21.8438 63.2344
+Q18.3125 60.0625 18.3125 54.3906" id="DejaVuSans-38"/>
+      </defs>
+      <g transform="translate(286.443125 246.8375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-38"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_6">
+     <g id="line2d_16">
+      <path clip-path="url(#p2650e7d7b6)" d="
+M360.683 235.239
+L360.683 12.0391" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_17">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="360.6828125" xlink:href="#m93b0483c22" y="235.2390625"/>
+      </g>
+     </g>
+     <g id="line2d_18">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="360.6828125" xlink:href="#m741efc42ff" y="12.0390625"/>
+      </g>
+     </g>
+     <g id="text_6">
+      <!-- 1.0 -->
+      <defs>
+       <path d="
+M12.4062 8.29688
+L28.5156 8.29688
+L28.5156 63.9219
+L10.9844 60.4062
+L10.9844 69.3906
+L28.4219 72.9062
+L38.2812 72.9062
+L38.2812 8.29688
+L54.3906 8.29688
+L54.3906 0
+L12.4062 0
+z
+" id="DejaVuSans-31"/>
+      </defs>
+      <g transform="translate(353.6125 246.8375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-31"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+      </g>
+     </g>
+    </g>
+   </g>
+   <g id="matplotlib.axis_2">
+    <g id="ytick_1">
+     <g id="line2d_19">
+      <path clip-path="url(#p2650e7d7b6)" d="
+M25.8828 235.239
+L360.683 235.239" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_20">
+      <defs>
+       <path d="
+M0 0
+L4 0" id="m728421d6d4" style="stroke:#000000;stroke-width:0.5;"/>
+      </defs>
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="25.8828125" xlink:href="#m728421d6d4" y="235.2390625"/>
+      </g>
+     </g>
+     <g id="line2d_21">
+      <defs>
+       <path d="
+M0 0
+L-4 0" id="mcb0005524f" style="stroke:#000000;stroke-width:0.5;"/>
+      </defs>
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="360.6828125" xlink:href="#mcb0005524f" y="235.2390625"/>
+      </g>
+     </g>
+     <g id="text_7">
+      <!-- 0.0 -->
+      <g transform="translate(7.303125 237.9984375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_2">
+     <g id="line2d_22">
+      <path clip-path="url(#p2650e7d7b6)" d="
+M25.8828 190.599
+L360.683 190.599" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_23">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="25.8828125" xlink:href="#m728421d6d4" y="190.5990625"/>
+      </g>
+     </g>
+     <g id="line2d_24">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="360.6828125" xlink:href="#mcb0005524f" y="190.5990625"/>
+      </g>
+     </g>
+     <g id="text_8">
+      <!-- 0.2 -->
+      <g transform="translate(7.640625 193.3584375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-32"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_3">
+     <g id="line2d_25">
+      <path clip-path="url(#p2650e7d7b6)" d="
+M25.8828 145.959
+L360.683 145.959" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_26">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="25.8828125" xlink:href="#m728421d6d4" y="145.9590625"/>
+      </g>
+     </g>
+     <g id="line2d_27">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="360.6828125" xlink:href="#mcb0005524f" y="145.9590625"/>
+      </g>
+     </g>
+     <g id="text_9">
+      <!-- 0.4 -->
+      <g transform="translate(7.2 148.7184375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-34"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_4">
+     <g id="line2d_28">
+      <path clip-path="url(#p2650e7d7b6)" d="
+M25.8828 101.319
+L360.683 101.319" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_29">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="25.8828125" xlink:href="#m728421d6d4" y="101.3190625"/>
+      </g>
+     </g>
+     <g id="line2d_30">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="360.6828125" xlink:href="#mcb0005524f" y="101.3190625"/>
+      </g>
+     </g>
+     <g id="text_10">
+      <!-- 0.6 -->
+      <g transform="translate(7.26875 104.0784375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-36"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_5">
+     <g id="line2d_31">
+      <path clip-path="url(#p2650e7d7b6)" d="
+M25.8828 56.6791
+L360.683 56.6791" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_32">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="25.8828125" xlink:href="#m728421d6d4" y="56.6790625"/>
+      </g>
+     </g>
+     <g id="line2d_33">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="360.6828125" xlink:href="#mcb0005524f" y="56.6790625"/>
+      </g>
+     </g>
+     <g id="text_11">
+      <!-- 0.8 -->
+      <g transform="translate(7.3234375 59.4384375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-38"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_6">
+     <g id="line2d_34">
+      <path clip-path="url(#p2650e7d7b6)" d="
+M25.8828 12.0391
+L360.683 12.0391" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_35">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="25.8828125" xlink:href="#m728421d6d4" y="12.0390625"/>
+      </g>
+     </g>
+     <g id="line2d_36">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="360.6828125" xlink:href="#mcb0005524f" y="12.0390625"/>
+      </g>
+     </g>
+     <g id="text_12">
+      <!-- 1.0 -->
+      <g transform="translate(7.7421875 14.7984375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-31"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+      </g>
+     </g>
+    </g>
+   </g>
+   <g id="patch_3">
+    <path d="
+M25.8828 12.0391
+L360.683 12.0391" style="fill:none;stroke:#000000;"/>
+   </g>
+   <g id="patch_4">
+    <path d="
+M360.683 235.239
+L360.683 12.0391" style="fill:none;stroke:#000000;"/>
+   </g>
+   <g id="patch_5">
+    <path d="
+M25.8828 235.239
+L360.683 235.239" style="fill:none;stroke:#000000;"/>
+   </g>
+   <g id="patch_6">
+    <path d="
+M25.8828 235.239
+L25.8828 12.0391" style="fill:none;stroke:#000000;"/>
+   </g>
+  </g>
+ </g>
+ <defs>
+  <clipPath id="p2650e7d7b6">
+   <rect height="223.2" width="334.8" x="25.8828125" y="12.0390625"/>
+  </clipPath>
+ </defs>
+</svg>
diff --git a/docs/figures/Coordinates_5_1.svg b/docs/figures/Coordinates_5_1.svg
new file mode 100644
index 0000000000000000000000000000000000000000..2d767b305fa1d9b369c80036288f4fda9fb2bad3
--- /dev/null
+++ b/docs/figures/Coordinates_5_1.svg
@@ -0,0 +1,552 @@
+<?xml version="1.0" encoding="utf-8" standalone="no"?>
+<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
+  "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
+<!-- Created with matplotlib (http://matplotlib.org/) -->
+<svg height="256pt" version="1.1" viewBox="0 0 374 256" width="374pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
+ <defs>
+  <style type="text/css">
+*{stroke-linecap:butt;stroke-linejoin:round;}
+  </style>
+ </defs>
+ <g id="figure_1">
+  <g id="patch_1">
+   <path d="
+M0 256.117
+L374.953 256.117
+L374.953 0
+L0 0
+z
+" style="fill:none;"/>
+  </g>
+  <g id="axes_1">
+   <g id="patch_2">
+    <path d="
+M25.8828 235.239
+L360.683 235.239
+L360.683 12.0391
+L25.8828 12.0391
+z
+" style="fill:none;"/>
+   </g>
+   <g id="patch_3">
+    <path clip-path="url(#p2650e7d7b6)" d="
+M226.763 56.6791
+L210.023 90.1591
+L197.3 83.7979
+L26.5524 235.574
+L25.2132 234.904
+L195.961 83.1283
+L183.239 76.7671
+z
+" style="fill:#0000ff;stroke:#000000;"/>
+   </g>
+   <g id="matplotlib.axis_1">
+    <g id="xtick_1">
+     <g id="line2d_1">
+      <path clip-path="url(#p2650e7d7b6)" d="
+M25.8828 235.239
+L25.8828 12.0391" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_2">
+      <defs>
+       <path d="
+M0 0
+L0 -4" id="m93b0483c22" style="stroke:#000000;stroke-width:0.5;"/>
+      </defs>
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="25.8828125" xlink:href="#m93b0483c22" y="235.2390625"/>
+      </g>
+     </g>
+     <g id="line2d_3">
+      <defs>
+       <path d="
+M0 0
+L0 4" id="m741efc42ff" style="stroke:#000000;stroke-width:0.5;"/>
+      </defs>
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="25.8828125" xlink:href="#m741efc42ff" y="12.0390625"/>
+      </g>
+     </g>
+     <g id="text_1">
+      <!-- 0.0 -->
+      <defs>
+       <path d="
+M31.7812 66.4062
+Q24.1719 66.4062 20.3281 58.9062
+Q16.5 51.4219 16.5 36.375
+Q16.5 21.3906 20.3281 13.8906
+Q24.1719 6.39062 31.7812 6.39062
+Q39.4531 6.39062 43.2812 13.8906
+Q47.125 21.3906 47.125 36.375
+Q47.125 51.4219 43.2812 58.9062
+Q39.4531 66.4062 31.7812 66.4062
+M31.7812 74.2188
+Q44.0469 74.2188 50.5156 64.5156
+Q56.9844 54.8281 56.9844 36.375
+Q56.9844 17.9688 50.5156 8.26562
+Q44.0469 -1.42188 31.7812 -1.42188
+Q19.5312 -1.42188 13.0625 8.26562
+Q6.59375 17.9688 6.59375 36.375
+Q6.59375 54.8281 13.0625 64.5156
+Q19.5312 74.2188 31.7812 74.2188" id="DejaVuSans-30"/>
+       <path d="
+M10.6875 12.4062
+L21 12.4062
+L21 0
+L10.6875 0
+z
+" id="DejaVuSans-2e"/>
+      </defs>
+      <g transform="translate(18.59296875 246.8375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_2">
+     <g id="line2d_4">
+      <path clip-path="url(#p2650e7d7b6)" d="
+M92.8428 235.239
+L92.8428 12.0391" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_5">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="92.8428125" xlink:href="#m93b0483c22" y="235.2390625"/>
+      </g>
+     </g>
+     <g id="line2d_6">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="92.8428125" xlink:href="#m741efc42ff" y="12.0390625"/>
+      </g>
+     </g>
+     <g id="text_2">
+      <!-- 0.2 -->
+      <defs>
+       <path d="
+M19.1875 8.29688
+L53.6094 8.29688
+L53.6094 0
+L7.32812 0
+L7.32812 8.29688
+Q12.9375 14.1094 22.625 23.8906
+Q32.3281 33.6875 34.8125 36.5312
+Q39.5469 41.8438 41.4219 45.5312
+Q43.3125 49.2188 43.3125 52.7812
+Q43.3125 58.5938 39.2344 62.25
+Q35.1562 65.9219 28.6094 65.9219
+Q23.9688 65.9219 18.8125 64.3125
+Q13.6719 62.7031 7.8125 59.4219
+L7.8125 69.3906
+Q13.7656 71.7812 18.9375 73
+Q24.125 74.2188 28.4219 74.2188
+Q39.75 74.2188 46.4844 68.5469
+Q53.2188 62.8906 53.2188 53.4219
+Q53.2188 48.9219 51.5312 44.8906
+Q49.8594 40.875 45.4062 35.4062
+Q44.1875 33.9844 37.6406 27.2188
+Q31.1094 20.4531 19.1875 8.29688" id="DejaVuSans-32"/>
+      </defs>
+      <g transform="translate(85.72171875 246.8375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-32"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_3">
+     <g id="line2d_7">
+      <path clip-path="url(#p2650e7d7b6)" d="
+M159.803 235.239
+L159.803 12.0391" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_8">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="159.8028125" xlink:href="#m93b0483c22" y="235.2390625"/>
+      </g>
+     </g>
+     <g id="line2d_9">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="159.8028125" xlink:href="#m741efc42ff" y="12.0390625"/>
+      </g>
+     </g>
+     <g id="text_3">
+      <!-- 0.4 -->
+      <defs>
+       <path d="
+M37.7969 64.3125
+L12.8906 25.3906
+L37.7969 25.3906
+z
+
+M35.2031 72.9062
+L47.6094 72.9062
+L47.6094 25.3906
+L58.0156 25.3906
+L58.0156 17.1875
+L47.6094 17.1875
+L47.6094 0
+L37.7969 0
+L37.7969 17.1875
+L4.89062 17.1875
+L4.89062 26.7031
+z
+" id="DejaVuSans-34"/>
+      </defs>
+      <g transform="translate(152.46140625 246.8375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-34"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_4">
+     <g id="line2d_10">
+      <path clip-path="url(#p2650e7d7b6)" d="
+M226.763 235.239
+L226.763 12.0391" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_11">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="226.7628125" xlink:href="#m93b0483c22" y="235.2390625"/>
+      </g>
+     </g>
+     <g id="line2d_12">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="226.7628125" xlink:href="#m741efc42ff" y="12.0390625"/>
+      </g>
+     </g>
+     <g id="text_4">
+      <!-- 0.6 -->
+      <defs>
+       <path d="
+M33.0156 40.375
+Q26.375 40.375 22.4844 35.8281
+Q18.6094 31.2969 18.6094 23.3906
+Q18.6094 15.5312 22.4844 10.9531
+Q26.375 6.39062 33.0156 6.39062
+Q39.6562 6.39062 43.5312 10.9531
+Q47.4062 15.5312 47.4062 23.3906
+Q47.4062 31.2969 43.5312 35.8281
+Q39.6562 40.375 33.0156 40.375
+M52.5938 71.2969
+L52.5938 62.3125
+Q48.875 64.0625 45.0938 64.9844
+Q41.3125 65.9219 37.5938 65.9219
+Q27.8281 65.9219 22.6719 59.3281
+Q17.5312 52.7344 16.7969 39.4062
+Q19.6719 43.6562 24.0156 45.9219
+Q28.375 48.1875 33.5938 48.1875
+Q44.5781 48.1875 50.9531 41.5156
+Q57.3281 34.8594 57.3281 23.3906
+Q57.3281 12.1562 50.6875 5.35938
+Q44.0469 -1.42188 33.0156 -1.42188
+Q20.3594 -1.42188 13.6719 8.26562
+Q6.98438 17.9688 6.98438 36.375
+Q6.98438 53.6562 15.1875 63.9375
+Q23.3906 74.2188 37.2031 74.2188
+Q40.9219 74.2188 44.7031 73.4844
+Q48.4844 72.75 52.5938 71.2969" id="DejaVuSans-36"/>
+      </defs>
+      <g transform="translate(219.45578125 246.8375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-36"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_5">
+     <g id="line2d_13">
+      <path clip-path="url(#p2650e7d7b6)" d="
+M293.723 235.239
+L293.723 12.0391" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_14">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="293.7228125" xlink:href="#m93b0483c22" y="235.2390625"/>
+      </g>
+     </g>
+     <g id="line2d_15">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="293.7228125" xlink:href="#m741efc42ff" y="12.0390625"/>
+      </g>
+     </g>
+     <g id="text_5">
+      <!-- 0.8 -->
+      <defs>
+       <path d="
+M31.7812 34.625
+Q24.75 34.625 20.7188 30.8594
+Q16.7031 27.0938 16.7031 20.5156
+Q16.7031 13.9219 20.7188 10.1562
+Q24.75 6.39062 31.7812 6.39062
+Q38.8125 6.39062 42.8594 10.1719
+Q46.9219 13.9688 46.9219 20.5156
+Q46.9219 27.0938 42.8906 30.8594
+Q38.875 34.625 31.7812 34.625
+M21.9219 38.8125
+Q15.5781 40.375 12.0312 44.7188
+Q8.5 49.0781 8.5 55.3281
+Q8.5 64.0625 14.7188 69.1406
+Q20.9531 74.2188 31.7812 74.2188
+Q42.6719 74.2188 48.875 69.1406
+Q55.0781 64.0625 55.0781 55.3281
+Q55.0781 49.0781 51.5312 44.7188
+Q48 40.375 41.7031 38.8125
+Q48.8281 37.1562 52.7969 32.3125
+Q56.7812 27.4844 56.7812 20.5156
+Q56.7812 9.90625 50.3125 4.23438
+Q43.8438 -1.42188 31.7812 -1.42188
+Q19.7344 -1.42188 13.25 4.23438
+Q6.78125 9.90625 6.78125 20.5156
+Q6.78125 27.4844 10.7812 32.3125
+Q14.7969 37.1562 21.9219 38.8125
+M18.3125 54.3906
+Q18.3125 48.7344 21.8438 45.5625
+Q25.3906 42.3906 31.7812 42.3906
+Q38.1406 42.3906 41.7188 45.5625
+Q45.3125 48.7344 45.3125 54.3906
+Q45.3125 60.0625 41.7188 63.2344
+Q38.1406 66.4062 31.7812 66.4062
+Q25.3906 66.4062 21.8438 63.2344
+Q18.3125 60.0625 18.3125 54.3906" id="DejaVuSans-38"/>
+      </defs>
+      <g transform="translate(286.443125 246.8375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-38"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_6">
+     <g id="line2d_16">
+      <path clip-path="url(#p2650e7d7b6)" d="
+M360.683 235.239
+L360.683 12.0391" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_17">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="360.6828125" xlink:href="#m93b0483c22" y="235.2390625"/>
+      </g>
+     </g>
+     <g id="line2d_18">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="360.6828125" xlink:href="#m741efc42ff" y="12.0390625"/>
+      </g>
+     </g>
+     <g id="text_6">
+      <!-- 1.0 -->
+      <defs>
+       <path d="
+M12.4062 8.29688
+L28.5156 8.29688
+L28.5156 63.9219
+L10.9844 60.4062
+L10.9844 69.3906
+L28.4219 72.9062
+L38.2812 72.9062
+L38.2812 8.29688
+L54.3906 8.29688
+L54.3906 0
+L12.4062 0
+z
+" id="DejaVuSans-31"/>
+      </defs>
+      <g transform="translate(353.6125 246.8375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-31"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+      </g>
+     </g>
+    </g>
+   </g>
+   <g id="matplotlib.axis_2">
+    <g id="ytick_1">
+     <g id="line2d_19">
+      <path clip-path="url(#p2650e7d7b6)" d="
+M25.8828 235.239
+L360.683 235.239" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_20">
+      <defs>
+       <path d="
+M0 0
+L4 0" id="m728421d6d4" style="stroke:#000000;stroke-width:0.5;"/>
+      </defs>
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="25.8828125" xlink:href="#m728421d6d4" y="235.2390625"/>
+      </g>
+     </g>
+     <g id="line2d_21">
+      <defs>
+       <path d="
+M0 0
+L-4 0" id="mcb0005524f" style="stroke:#000000;stroke-width:0.5;"/>
+      </defs>
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="360.6828125" xlink:href="#mcb0005524f" y="235.2390625"/>
+      </g>
+     </g>
+     <g id="text_7">
+      <!-- 0.0 -->
+      <g transform="translate(7.303125 237.9984375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_2">
+     <g id="line2d_22">
+      <path clip-path="url(#p2650e7d7b6)" d="
+M25.8828 190.599
+L360.683 190.599" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_23">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="25.8828125" xlink:href="#m728421d6d4" y="190.5990625"/>
+      </g>
+     </g>
+     <g id="line2d_24">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="360.6828125" xlink:href="#mcb0005524f" y="190.5990625"/>
+      </g>
+     </g>
+     <g id="text_8">
+      <!-- 0.2 -->
+      <g transform="translate(7.640625 193.3584375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-32"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_3">
+     <g id="line2d_25">
+      <path clip-path="url(#p2650e7d7b6)" d="
+M25.8828 145.959
+L360.683 145.959" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_26">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="25.8828125" xlink:href="#m728421d6d4" y="145.9590625"/>
+      </g>
+     </g>
+     <g id="line2d_27">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="360.6828125" xlink:href="#mcb0005524f" y="145.9590625"/>
+      </g>
+     </g>
+     <g id="text_9">
+      <!-- 0.4 -->
+      <g transform="translate(7.2 148.7184375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-34"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_4">
+     <g id="line2d_28">
+      <path clip-path="url(#p2650e7d7b6)" d="
+M25.8828 101.319
+L360.683 101.319" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_29">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="25.8828125" xlink:href="#m728421d6d4" y="101.3190625"/>
+      </g>
+     </g>
+     <g id="line2d_30">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="360.6828125" xlink:href="#mcb0005524f" y="101.3190625"/>
+      </g>
+     </g>
+     <g id="text_10">
+      <!-- 0.6 -->
+      <g transform="translate(7.26875 104.0784375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-36"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_5">
+     <g id="line2d_31">
+      <path clip-path="url(#p2650e7d7b6)" d="
+M25.8828 56.6791
+L360.683 56.6791" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_32">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="25.8828125" xlink:href="#m728421d6d4" y="56.6790625"/>
+      </g>
+     </g>
+     <g id="line2d_33">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="360.6828125" xlink:href="#mcb0005524f" y="56.6790625"/>
+      </g>
+     </g>
+     <g id="text_11">
+      <!-- 0.8 -->
+      <g transform="translate(7.3234375 59.4384375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-38"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_6">
+     <g id="line2d_34">
+      <path clip-path="url(#p2650e7d7b6)" d="
+M25.8828 12.0391
+L360.683 12.0391" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_35">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="25.8828125" xlink:href="#m728421d6d4" y="12.0390625"/>
+      </g>
+     </g>
+     <g id="line2d_36">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="360.6828125" xlink:href="#mcb0005524f" y="12.0390625"/>
+      </g>
+     </g>
+     <g id="text_12">
+      <!-- 1.0 -->
+      <g transform="translate(7.7421875 14.7984375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-31"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+      </g>
+     </g>
+    </g>
+   </g>
+   <g id="patch_4">
+    <path d="
+M25.8828 12.0391
+L360.683 12.0391" style="fill:none;stroke:#000000;"/>
+   </g>
+   <g id="patch_5">
+    <path d="
+M360.683 235.239
+L360.683 12.0391" style="fill:none;stroke:#000000;"/>
+   </g>
+   <g id="patch_6">
+    <path d="
+M25.8828 235.239
+L360.683 235.239" style="fill:none;stroke:#000000;"/>
+   </g>
+   <g id="patch_7">
+    <path d="
+M25.8828 235.239
+L25.8828 12.0391" style="fill:none;stroke:#000000;"/>
+   </g>
+  </g>
+ </g>
+ <defs>
+  <clipPath id="p2650e7d7b6">
+   <rect height="223.2" width="334.8" x="25.8828125" y="12.0390625"/>
+  </clipPath>
+ </defs>
+</svg>
diff --git a/docs/figures/Coordinates_7_0.svg b/docs/figures/Coordinates_7_0.svg
new file mode 100644
index 0000000000000000000000000000000000000000..fba9084bf378e5abf9eb13b570485ecceee04681
--- /dev/null
+++ b/docs/figures/Coordinates_7_0.svg
@@ -0,0 +1,1063 @@
+<?xml version="1.0" encoding="utf-8" standalone="no"?>
+<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
+  "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
+<!-- Created with matplotlib (http://matplotlib.org/) -->
+<svg height="269pt" version="1.1" viewBox="0 0 275 269" width="275pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
+ <defs>
+  <style type="text/css">
+*{stroke-linecap:butt;stroke-linejoin:round;}
+  </style>
+ </defs>
+ <g id="figure_1">
+  <g id="patch_1">
+   <path d="
+M0 269.598
+L275.815 269.598
+L275.815 0
+L0 0
+z
+" style="fill:none;"/>
+  </g>
+  <g id="axes_1">
+   <g id="patch_2">
+    <path d="
+M140.979 246.399
+C170.575 246.399 198.964 234.64 219.892 213.712
+C240.82 192.784 252.579 164.396 252.579 134.799
+C252.579 105.202 240.82 76.8139 219.892 55.8859
+C198.964 34.9579 170.575 23.1991 140.979 23.1991
+C111.382 23.1991 82.9936 34.9579 62.0656 55.8859
+C41.1376 76.8139 29.3788 105.202 29.3788 134.799
+C29.3788 164.396 41.1376 192.784 62.0656 213.712
+C82.9936 234.64 111.382 246.399 140.979 246.399
+z
+" style="fill:none;"/>
+   </g>
+   <g id="matplotlib.axis_1">
+    <g id="xtick_1">
+     <g id="line2d_1">
+      <path clip-path="url(#p66f81f3dfb)" d="
+M140.979 134.799
+L252.579 134.799" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="text_1">
+      <!-- 0° -->
+      <defs>
+       <path d="
+M31.7812 66.4062
+Q24.1719 66.4062 20.3281 58.9062
+Q16.5 51.4219 16.5 36.375
+Q16.5 21.3906 20.3281 13.8906
+Q24.1719 6.39062 31.7812 6.39062
+Q39.4531 6.39062 43.2812 13.8906
+Q47.125 21.3906 47.125 36.375
+Q47.125 51.4219 43.2812 58.9062
+Q39.4531 66.4062 31.7812 66.4062
+M31.7812 74.2188
+Q44.0469 74.2188 50.5156 64.5156
+Q56.9844 54.8281 56.9844 36.375
+Q56.9844 17.9688 50.5156 8.26562
+Q44.0469 -1.42188 31.7812 -1.42188
+Q19.5312 -1.42188 13.0625 8.26562
+Q6.59375 17.9688 6.59375 36.375
+Q6.59375 54.8281 13.0625 64.5156
+Q19.5312 74.2188 31.7812 74.2188" id="DejaVuSans-30"/>
+       <path d="
+M25 67.9219
+Q21.0938 67.9219 18.4062 65.2031
+Q15.7188 62.5 15.7188 58.5938
+Q15.7188 54.7344 18.4062 52.0781
+Q21.0938 49.4219 25 49.4219
+Q28.9062 49.4219 31.5938 52.0781
+Q34.2812 54.7344 34.2812 58.5938
+Q34.2812 62.4531 31.5625 65.1875
+Q28.8594 67.9219 25 67.9219
+M25 74.2188
+Q28.125 74.2188 31 73.0156
+Q33.8906 71.8281 35.9844 69.5781
+Q38.2344 67.3906 39.3594 64.5938
+Q40.4844 61.8125 40.4844 58.5938
+Q40.4844 52.1562 35.9688 47.6875
+Q31.4531 43.2188 24.9062 43.2188
+Q18.3125 43.2188 13.9062 47.6094
+Q9.51562 52 9.51562 58.5938
+Q9.51562 65.1406 14 69.6719
+Q18.5 74.2188 25 74.2188" id="DejaVuSans-b0"/>
+      </defs>
+      <g transform="translate(258.86296875 137.5584375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-b0"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_2">
+     <g id="line2d_2">
+      <path clip-path="url(#p66f81f3dfb)" d="
+M140.979 134.799
+L219.892 55.8859" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="text_2">
+      <!-- 45° -->
+      <defs>
+       <path d="
+M10.7969 72.9062
+L49.5156 72.9062
+L49.5156 64.5938
+L19.8281 64.5938
+L19.8281 46.7344
+Q21.9688 47.4688 24.1094 47.8281
+Q26.2656 48.1875 28.4219 48.1875
+Q40.625 48.1875 47.75 41.5
+Q54.8906 34.8125 54.8906 23.3906
+Q54.8906 11.625 47.5625 5.09375
+Q40.2344 -1.42188 26.9062 -1.42188
+Q22.3125 -1.42188 17.5469 -0.640625
+Q12.7969 0.140625 7.71875 1.70312
+L7.71875 11.625
+Q12.1094 9.23438 16.7969 8.0625
+Q21.4844 6.89062 26.7031 6.89062
+Q35.1562 6.89062 40.0781 11.3281
+Q45.0156 15.7656 45.0156 23.3906
+Q45.0156 31 40.0781 35.4375
+Q35.1562 39.8906 26.7031 39.8906
+Q22.75 39.8906 18.8125 39.0156
+Q14.8906 38.1406 10.7969 36.2812
+z
+" id="DejaVuSans-35"/>
+       <path d="
+M37.7969 64.3125
+L12.8906 25.3906
+L37.7969 25.3906
+z
+
+M35.2031 72.9062
+L47.6094 72.9062
+L47.6094 25.3906
+L58.0156 25.3906
+L58.0156 17.1875
+L47.6094 17.1875
+L47.6094 0
+L37.7969 0
+L37.7969 17.1875
+L4.89062 17.1875
+L4.89062 26.7031
+z
+" id="DejaVuSans-34"/>
+      </defs>
+      <g transform="translate(219.640990958 50.7540090415)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-34"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-35"/>
+       <use x="127.24609375" xlink:href="#DejaVuSans-b0"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_3">
+     <g id="line2d_3">
+      <path clip-path="url(#p66f81f3dfb)" d="
+M140.979 134.799
+L140.979 23.1991" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="text_3">
+      <!-- 90° -->
+      <defs>
+       <path d="
+M10.9844 1.51562
+L10.9844 10.5
+Q14.7031 8.73438 18.5 7.8125
+Q22.3125 6.89062 25.9844 6.89062
+Q35.75 6.89062 40.8906 13.4531
+Q46.0469 20.0156 46.7812 33.4062
+Q43.9531 29.2031 39.5938 26.9531
+Q35.25 24.7031 29.9844 24.7031
+Q19.0469 24.7031 12.6719 31.3125
+Q6.29688 37.9375 6.29688 49.4219
+Q6.29688 60.6406 12.9375 67.4219
+Q19.5781 74.2188 30.6094 74.2188
+Q43.2656 74.2188 49.9219 64.5156
+Q56.5938 54.8281 56.5938 36.375
+Q56.5938 19.1406 48.4062 8.85938
+Q40.2344 -1.42188 26.4219 -1.42188
+Q22.7031 -1.42188 18.8906 -0.6875
+Q15.0938 0.046875 10.9844 1.51562
+M30.6094 32.4219
+Q37.25 32.4219 41.125 36.9531
+Q45.0156 41.5 45.0156 49.4219
+Q45.0156 57.2812 41.125 61.8438
+Q37.25 66.4062 30.6094 66.4062
+Q23.9688 66.4062 20.0938 61.8438
+Q16.2188 57.2812 16.2188 49.4219
+Q16.2188 41.5 20.0938 36.9531
+Q23.9688 32.4219 30.6094 32.4219" id="DejaVuSans-39"/>
+      </defs>
+      <g transform="translate(132.906875 14.7984375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-39"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-30"/>
+       <use x="127.24609375" xlink:href="#DejaVuSans-b0"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_4">
+     <g id="line2d_4">
+      <path clip-path="url(#p66f81f3dfb)" d="
+M140.979 134.799
+L62.0656 55.8859" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="text_4">
+      <!-- 135° -->
+      <defs>
+       <path d="
+M12.4062 8.29688
+L28.5156 8.29688
+L28.5156 63.9219
+L10.9844 60.4062
+L10.9844 69.3906
+L28.4219 72.9062
+L38.2812 72.9062
+L38.2812 8.29688
+L54.3906 8.29688
+L54.3906 0
+L12.4062 0
+z
+" id="DejaVuSans-31"/>
+       <path d="
+M40.5781 39.3125
+Q47.6562 37.7969 51.625 33
+Q55.6094 28.2188 55.6094 21.1875
+Q55.6094 10.4062 48.1875 4.48438
+Q40.7656 -1.42188 27.0938 -1.42188
+Q22.5156 -1.42188 17.6562 -0.515625
+Q12.7969 0.390625 7.625 2.20312
+L7.625 11.7188
+Q11.7188 9.32812 16.5938 8.10938
+Q21.4844 6.89062 26.8125 6.89062
+Q36.0781 6.89062 40.9375 10.5469
+Q45.7969 14.2031 45.7969 21.1875
+Q45.7969 27.6406 41.2812 31.2656
+Q36.7656 34.9062 28.7188 34.9062
+L20.2188 34.9062
+L20.2188 43.0156
+L29.1094 43.0156
+Q36.375 43.0156 40.2344 45.9219
+Q44.0938 48.8281 44.0938 54.2969
+Q44.0938 59.9062 40.1094 62.9062
+Q36.1406 65.9219 28.7188 65.9219
+Q24.6562 65.9219 20.0156 65.0312
+Q15.375 64.1562 9.8125 62.3125
+L9.8125 71.0938
+Q15.4375 72.6562 20.3438 73.4375
+Q25.25 74.2188 29.5938 74.2188
+Q40.8281 74.2188 47.3594 69.1094
+Q53.9062 64.0156 53.9062 55.3281
+Q53.9062 49.2656 50.4375 45.0938
+Q46.9688 40.9219 40.5781 39.3125" id="DejaVuSans-33"/>
+      </defs>
+      <g transform="translate(43.1555715415 50.7540090415)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-31"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-33"/>
+       <use x="127.24609375" xlink:href="#DejaVuSans-35"/>
+       <use x="190.869140625" xlink:href="#DejaVuSans-b0"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_5">
+     <g id="line2d_5">
+      <path clip-path="url(#p66f81f3dfb)" d="
+M140.979 134.799
+L29.3788 134.799" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="text_5">
+      <!-- 180° -->
+      <defs>
+       <path d="
+M31.7812 34.625
+Q24.75 34.625 20.7188 30.8594
+Q16.7031 27.0938 16.7031 20.5156
+Q16.7031 13.9219 20.7188 10.1562
+Q24.75 6.39062 31.7812 6.39062
+Q38.8125 6.39062 42.8594 10.1719
+Q46.9219 13.9688 46.9219 20.5156
+Q46.9219 27.0938 42.8906 30.8594
+Q38.875 34.625 31.7812 34.625
+M21.9219 38.8125
+Q15.5781 40.375 12.0312 44.7188
+Q8.5 49.0781 8.5 55.3281
+Q8.5 64.0625 14.7188 69.1406
+Q20.9531 74.2188 31.7812 74.2188
+Q42.6719 74.2188 48.875 69.1406
+Q55.0781 64.0625 55.0781 55.3281
+Q55.0781 49.0781 51.5312 44.7188
+Q48 40.375 41.7031 38.8125
+Q48.8281 37.1562 52.7969 32.3125
+Q56.7812 27.4844 56.7812 20.5156
+Q56.7812 9.90625 50.3125 4.23438
+Q43.8438 -1.42188 31.7812 -1.42188
+Q19.7344 -1.42188 13.25 4.23438
+Q6.78125 9.90625 6.78125 20.5156
+Q6.78125 27.4844 10.7812 32.3125
+Q14.7969 37.1562 21.9219 38.8125
+M18.3125 54.3906
+Q18.3125 48.7344 21.8438 45.5625
+Q25.3906 42.3906 31.7812 42.3906
+Q38.1406 42.3906 41.7188 45.5625
+Q45.3125 48.7344 45.3125 54.3906
+Q45.3125 60.0625 41.7188 63.2344
+Q38.1406 66.4062 31.7812 66.4062
+Q25.3906 66.4062 21.8438 63.2344
+Q18.3125 60.0625 18.3125 54.3906" id="DejaVuSans-38"/>
+      </defs>
+      <g transform="translate(7.2 137.5584375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-31"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-38"/>
+       <use x="127.24609375" xlink:href="#DejaVuSans-30"/>
+       <use x="190.869140625" xlink:href="#DejaVuSans-b0"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_6">
+     <g id="line2d_6">
+      <path clip-path="url(#p66f81f3dfb)" d="
+M140.979 134.799
+L62.0656 213.712" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="text_6">
+      <!-- 225° -->
+      <defs>
+       <path d="
+M19.1875 8.29688
+L53.6094 8.29688
+L53.6094 0
+L7.32812 0
+L7.32812 8.29688
+Q12.9375 14.1094 22.625 23.8906
+Q32.3281 33.6875 34.8125 36.5312
+Q39.5469 41.8438 41.4219 45.5312
+Q43.3125 49.2188 43.3125 52.7812
+Q43.3125 58.5938 39.2344 62.25
+Q35.1562 65.9219 28.6094 65.9219
+Q23.9688 65.9219 18.8125 64.3125
+Q13.6719 62.7031 7.8125 59.4219
+L7.8125 69.3906
+Q13.7656 71.7812 18.9375 73
+Q24.125 74.2188 28.4219 74.2188
+Q39.75 74.2188 46.4844 68.5469
+Q53.2188 62.8906 53.2188 53.4219
+Q53.2188 48.9219 51.5312 44.8906
+Q49.8594 40.875 45.4062 35.4062
+Q44.1875 33.9844 37.6406 27.2188
+Q31.1094 20.4531 19.1875 8.29688" id="DejaVuSans-32"/>
+      </defs>
+      <g transform="translate(42.9727590415 224.362865958)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-32"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-32"/>
+       <use x="127.24609375" xlink:href="#DejaVuSans-35"/>
+       <use x="190.869140625" xlink:href="#DejaVuSans-b0"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_7">
+     <g id="line2d_7">
+      <path clip-path="url(#p66f81f3dfb)" d="
+M140.979 134.799
+L140.979 246.399" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="text_7">
+      <!-- 270° -->
+      <defs>
+       <path d="
+M8.20312 72.9062
+L55.0781 72.9062
+L55.0781 68.7031
+L28.6094 0
+L18.3125 0
+L43.2188 64.5938
+L8.20312 64.5938
+z
+" id="DejaVuSans-37"/>
+      </defs>
+      <g transform="translate(129.7771875 260.3184375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-32"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-37"/>
+       <use x="127.24609375" xlink:href="#DejaVuSans-30"/>
+       <use x="190.869140625" xlink:href="#DejaVuSans-b0"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_8">
+     <g id="line2d_8">
+      <path clip-path="url(#p66f81f3dfb)" d="
+M140.979 134.799
+L219.892 213.712" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="text_8">
+      <!-- 315° -->
+      <g transform="translate(216.596459708 224.362865958)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-33"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-31"/>
+       <use x="127.24609375" xlink:href="#DejaVuSans-35"/>
+       <use x="190.869140625" xlink:href="#DejaVuSans-b0"/>
+      </g>
+     </g>
+    </g>
+   </g>
+   <g id="matplotlib.axis_2">
+    <g id="ytick_1">
+     <g id="line2d_9">
+      <path clip-path="url(#p66f81f3dfb)" d="
+M163.299 134.799
+L163.176 132.466
+L162.811 130.158
+L162.206 127.902
+L161.369 125.721
+L160.308 123.639
+L159.036 121.68
+L157.566 119.864
+L155.914 118.212
+L154.098 116.742
+L152.139 115.469
+L150.057 114.409
+L147.876 113.571
+L145.619 112.967
+L143.312 112.601
+L140.979 112.479
+L138.646 112.601
+L136.338 112.967
+L134.081 113.571
+L131.9 114.409
+L129.819 115.469
+L127.859 116.742
+L126.044 118.212
+L124.392 119.864
+L122.921 121.68
+L121.649 123.639
+L120.588 125.721
+L119.751 127.902
+L119.146 130.158
+L118.781 132.466
+L118.659 134.799
+L118.781 137.132
+L119.146 139.44
+L119.751 141.696
+L120.588 143.877
+L121.649 145.959
+L122.921 147.918
+L124.392 149.734
+L126.044 151.386
+L127.859 152.856
+L129.819 154.129
+L131.9 155.189
+L134.081 156.027
+L136.338 156.631
+L138.646 156.997
+L140.979 157.119
+L143.312 156.997
+L145.619 156.631
+L147.876 156.027
+L150.057 155.189
+L152.139 154.129
+L154.098 152.856
+L155.914 151.386
+L157.566 149.734
+L159.036 147.918
+L160.308 145.959
+L161.369 143.877
+L162.206 141.696
+L162.811 139.44
+L163.176 137.132
+L163.299 134.799
+L163.299 134.799" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="text_9">
+      <!-- 0.2 -->
+      <defs>
+       <path d="
+M10.6875 12.4062
+L21 12.4062
+L21 0
+L10.6875 0
+z
+" id="DejaVuSans-2e"/>
+      </defs>
+      <g transform="translate(161.599741166 124.17788079)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-32"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_2">
+     <g id="line2d_10">
+      <path clip-path="url(#p66f81f3dfb)" d="
+M185.619 134.799
+L185.592 133.241
+L185.51 131.685
+L185.184 128.586
+L184.643 125.518
+L183.889 122.495
+L182.927 119.531
+L181.759 116.642
+L180.394 113.842
+L178.836 111.143
+L177.093 108.56
+L175.175 106.105
+L173.09 103.79
+L170.849 101.625
+L168.462 99.6223
+L165.941 97.7908
+L163.299 96.1397
+L160.548 94.6769
+L157.701 93.4096
+L154.773 92.3439
+L151.778 91.4851
+L148.73 90.8372
+L145.645 90.4036
+L142.537 90.1863
+L139.421 90.1863
+L136.313 90.4036
+L133.227 90.8372
+L130.179 91.4851
+L127.184 92.3439
+L124.256 93.4096
+L121.41 94.6769
+L118.659 96.1397
+L116.016 97.7908
+L113.496 99.6223
+L111.109 101.625
+L108.867 103.79
+L106.783 106.105
+L104.864 108.56
+L103.122 111.143
+L101.564 113.842
+L100.198 116.642
+L99.0309 119.531
+L98.068 122.495
+L97.3142 125.518
+L96.7732 128.586
+L96.4475 131.685
+L96.3388 134.799
+L96.4475 137.913
+L96.7732 141.012
+L97.3142 144.08
+L98.068 147.104
+L99.0309 150.067
+L100.198 152.956
+L101.564 155.756
+L103.122 158.455
+L104.864 161.038
+L106.783 163.493
+L108.867 165.809
+L111.109 167.973
+L113.496 169.976
+L116.016 171.807
+L118.659 173.458
+L121.41 174.921
+L124.256 176.189
+L127.184 177.254
+L130.179 178.113
+L133.227 178.761
+L136.313 179.195
+L139.421 179.412
+L142.537 179.412
+L145.645 179.195
+L148.73 178.761
+L151.778 178.113
+L154.773 177.254
+L157.701 176.189
+L160.548 174.921
+L163.299 173.458
+L165.941 171.807
+L168.462 169.976
+L170.849 167.973
+L173.09 165.809
+L175.175 163.493
+L177.093 161.038
+L178.836 158.455
+L180.394 155.756
+L181.759 152.956
+L182.927 150.067
+L183.889 147.104
+L184.643 144.08
+L185.184 141.012
+L185.51 137.913
+L185.619 134.799
+L185.619 134.799" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="text_10">
+      <!-- 0.4 -->
+      <g transform="translate(182.220732331 115.636386579)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-34"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_3">
+     <g id="line2d_11">
+      <path clip-path="url(#p66f81f3dfb)" d="
+M207.939 134.799
+L207.898 132.462
+L207.776 130.128
+L207.287 125.48
+L206.476 120.877
+L205.345 116.342
+L203.901 111.897
+L202.15 107.564
+L200.101 103.363
+L197.764 99.3157
+L195.151 95.441
+L192.273 91.758
+L189.146 88.2847
+L185.784 85.0381
+L182.203 82.0339
+L178.422 79.2867
+L174.459 76.81
+L170.332 74.6158
+L166.062 72.7148
+L161.671 71.1163
+L157.178 69.8281
+L152.606 68.8563
+L147.978 68.2059
+L143.316 67.8799
+L138.642 67.8799
+L133.98 68.2059
+L129.351 68.8563
+L124.78 69.8281
+L120.287 71.1163
+L115.895 72.7148
+L111.625 74.6158
+L107.499 76.81
+L103.535 79.2867
+L99.7541 82.0339
+L96.1738 85.0381
+L92.8118 88.2847
+L89.6844 91.758
+L86.807 95.441
+L84.1934 99.3157
+L81.8566 103.363
+L79.8077 107.564
+L78.0569 111.897
+L76.6127 116.342
+L75.482 120.877
+L74.6704 125.48
+L74.1819 130.128
+L74.0187 134.799
+L74.1819 139.47
+L74.6704 144.118
+L75.482 148.721
+L76.6127 153.256
+L78.0569 157.701
+L79.8077 162.034
+L81.8566 166.235
+L84.1934 170.282
+L86.807 174.157
+L89.6844 177.84
+L92.8118 181.313
+L96.1738 184.56
+L99.7541 187.564
+L103.535 190.311
+L107.499 192.788
+L111.625 194.982
+L115.895 196.883
+L120.287 198.482
+L124.78 199.77
+L129.351 200.742
+L133.98 201.392
+L138.642 201.718
+L143.316 201.718
+L147.978 201.392
+L152.606 200.742
+L157.178 199.77
+L161.671 198.482
+L166.062 196.883
+L170.332 194.982
+L174.459 192.788
+L178.422 190.311
+L182.203 187.564
+L185.784 184.56
+L189.146 181.313
+L192.273 177.84
+L195.151 174.157
+L197.764 170.282
+L200.101 166.235
+L202.15 162.034
+L203.901 157.701
+L205.345 153.256
+L206.476 148.721
+L207.287 144.118
+L207.776 139.47
+L207.939 134.799
+L207.939 134.799" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="text_11">
+      <!-- 0.6 -->
+      <defs>
+       <path d="
+M33.0156 40.375
+Q26.375 40.375 22.4844 35.8281
+Q18.6094 31.2969 18.6094 23.3906
+Q18.6094 15.5312 22.4844 10.9531
+Q26.375 6.39062 33.0156 6.39062
+Q39.6562 6.39062 43.5312 10.9531
+Q47.4062 15.5312 47.4062 23.3906
+Q47.4062 31.2969 43.5312 35.8281
+Q39.6562 40.375 33.0156 40.375
+M52.5938 71.2969
+L52.5938 62.3125
+Q48.875 64.0625 45.0938 64.9844
+Q41.3125 65.9219 37.5938 65.9219
+Q27.8281 65.9219 22.6719 59.3281
+Q17.5312 52.7344 16.7969 39.4062
+Q19.6719 43.6562 24.0156 45.9219
+Q28.375 48.1875 33.5938 48.1875
+Q44.5781 48.1875 50.9531 41.5156
+Q57.3281 34.8594 57.3281 23.3906
+Q57.3281 12.1562 50.6875 5.35938
+Q44.0469 -1.42188 33.0156 -1.42188
+Q20.3594 -1.42188 13.6719 8.26562
+Q6.98438 17.9688 6.98438 36.375
+Q6.98438 53.6562 15.1875 63.9375
+Q23.3906 74.2188 37.2031 74.2188
+Q40.9219 74.2188 44.7031 73.4844
+Q48.4844 72.75 52.5938 71.2969" id="DejaVuSans-36"/>
+      </defs>
+      <g transform="translate(202.841723497 107.094892369)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-36"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_4">
+     <g id="line2d_12">
+      <path clip-path="url(#p66f81f3dfb)" d="
+M230.259 134.799
+L230.204 131.683
+L230.041 128.571
+L229.39 122.374
+L228.308 116.237
+L226.8 110.19
+L224.875 104.264
+L222.54 98.4856
+L219.808 92.8846
+L216.692 87.4879
+L213.208 82.3216
+L209.371 77.411
+L205.201 72.78
+L200.719 68.4511
+L195.945 64.4455
+L190.903 60.7826
+L185.619 57.4803
+L180.117 54.5547
+L174.424 52.0201
+L168.568 49.8887
+L162.578 48.1711
+L156.482 46.8754
+L150.311 46.0081
+L144.095 45.5734
+L137.863 45.5734
+L131.646 46.0081
+L125.475 46.8754
+L119.38 48.1711
+L113.39 49.8887
+L107.534 52.0201
+L101.841 54.5547
+L96.3388 57.4803
+L91.054 60.7826
+L86.0125 64.4455
+L81.2388 68.4511
+L76.7561 72.78
+L72.5863 77.411
+L68.7497 82.3216
+L65.265 87.4879
+L62.1492 92.8846
+L59.4174 98.4856
+L57.083 104.264
+L55.1573 110.19
+L53.6497 116.237
+L52.5676 122.374
+L51.9162 128.571
+L51.6988 134.799
+L51.9162 141.027
+L52.5676 147.224
+L53.6497 153.361
+L55.1573 159.408
+L57.083 165.335
+L59.4174 171.113
+L62.1492 176.713
+L65.265 182.11
+L68.7497 187.277
+L72.5863 192.187
+L76.7561 196.818
+L81.2388 201.147
+L86.0125 205.153
+L91.054 208.816
+L96.3387 212.118
+L101.841 215.043
+L107.534 217.578
+L113.39 219.709
+L119.38 221.427
+L125.475 222.723
+L131.646 223.59
+L137.863 224.025
+L144.095 224.025
+L150.311 223.59
+L156.482 222.723
+L162.578 221.427
+L168.568 219.709
+L174.424 217.578
+L180.117 215.043
+L185.619 212.118
+L190.903 208.816
+L195.945 205.153
+L200.719 201.147
+L205.201 196.818
+L209.371 192.187
+L213.208 187.277
+L216.692 182.11
+L219.808 176.713
+L222.54 171.113
+L224.875 165.335
+L226.8 159.408
+L228.308 153.361
+L229.39 147.224
+L230.041 141.027
+L230.259 134.799
+L230.259 134.799" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="text_12">
+      <!-- 0.8 -->
+      <g transform="translate(223.462714663 98.5533981584)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-38"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_5">
+     <g id="line2d_13">
+      <path clip-path="url(#p66f81f3dfb)" d="
+M252.579 134.799
+L252.511 130.904
+L252.307 127.014
+L251.967 123.134
+L251.493 119.267
+L250.883 115.42
+L250.14 111.596
+L249.264 107.801
+L248.256 104.038
+L247.117 100.313
+L245.848 96.6296
+L244.452 92.993
+L242.93 89.4073
+L241.284 85.8768
+L239.516 82.406
+L237.627 78.9991
+L235.621 75.6601
+L233.499 72.3931
+L231.265 69.2022
+L228.921 66.0912
+L226.469 63.064
+L223.914 60.1241
+L221.257 57.2752
+L218.503 54.5207
+L215.654 51.8641
+L212.714 49.3085
+L209.687 46.8571
+L206.576 44.5128
+L203.385 42.2785
+L200.118 40.1569
+L196.779 38.1506
+L193.372 36.2621
+L189.901 34.4936
+L186.371 32.8474
+L182.785 31.3253
+L179.148 29.9294
+L175.465 28.6612
+L171.74 27.5223
+L167.977 26.5141
+L164.182 25.6378
+L160.358 24.8945
+L156.51 24.2851
+L152.644 23.8104
+L148.764 23.4709
+L144.874 23.267
+L140.979 23.1991
+L137.084 23.267
+L133.194 23.4709
+L129.313 23.8104
+L125.447 24.2851
+L121.6 24.8945
+L117.776 25.6378
+L113.98 26.5141
+L110.218 27.5223
+L106.492 28.6612
+L102.809 29.9294
+L99.1727 31.3253
+L95.5869 32.8474
+L92.0565 34.4936
+L88.5857 36.2621
+L85.1788 38.1506
+L81.8398 40.1569
+L78.5728 42.2785
+L75.3819 44.5128
+L72.2709 46.8571
+L69.2437 49.3085
+L66.3038 51.8641
+L63.4549 54.5207
+L60.7004 57.2752
+L58.0438 60.1241
+L55.4882 63.064
+L53.0367 66.0912
+L50.6925 69.2022
+L48.4582 72.3931
+L46.3366 75.6601
+L44.3303 78.9991
+L42.4418 82.406
+L40.6733 85.8768
+L39.0271 89.4073
+L37.505 92.993
+L36.1091 96.6296
+L34.8408 100.313
+L33.7019 104.038
+L32.6937 107.801
+L31.8175 111.596
+L31.0742 115.42
+L30.4648 119.267
+L29.9901 123.134
+L29.6506 127.014
+L29.4467 130.904
+L29.3788 134.799
+L29.4467 138.694
+L29.6506 142.584
+L29.9901 146.464
+L30.4648 150.331
+L31.0742 154.178
+L31.8175 158.002
+L32.6937 161.798
+L33.7019 165.56
+L34.8408 169.285
+L36.1091 172.969
+L37.505 176.605
+L39.0271 180.191
+L40.6733 183.721
+L42.4418 187.192
+L44.3303 190.599
+L46.3366 193.938
+L48.4582 197.205
+L50.6925 200.396
+L53.0367 203.507
+L55.4882 206.534
+L58.0438 209.474
+L60.7004 212.323
+L63.4549 215.077
+L66.3038 217.734
+L69.2437 220.29
+L72.2709 222.741
+L75.3819 225.085
+L78.5728 227.32
+L81.8398 229.441
+L85.1787 231.447
+L88.5857 233.336
+L92.0565 235.104
+L95.5869 236.751
+L99.1727 238.273
+L102.809 239.669
+L106.492 240.937
+L110.218 242.076
+L113.98 243.084
+L117.776 243.96
+L121.6 244.704
+L125.447 245.313
+L129.313 245.788
+L133.194 246.127
+L137.084 246.331
+L140.979 246.399
+L144.874 246.331
+L148.764 246.127
+L152.644 245.788
+L156.51 245.313
+L160.358 244.704
+L164.182 243.96
+L167.977 243.084
+L171.74 242.076
+L175.465 240.937
+L179.148 239.669
+L182.785 238.273
+L186.371 236.751
+L189.901 235.104
+L193.372 233.336
+L196.779 231.447
+L200.118 229.441
+L203.385 227.32
+L206.576 225.085
+L209.687 222.741
+L212.714 220.29
+L215.654 217.734
+L218.503 215.077
+L221.257 212.323
+L223.914 209.474
+L226.469 206.534
+L228.921 203.507
+L231.265 200.396
+L233.499 197.205
+L235.621 193.938
+L237.627 190.599
+L239.516 187.192
+L241.284 183.721
+L242.93 180.191
+L244.452 176.605
+L245.848 172.969
+L247.117 169.285
+L248.256 165.56
+L249.264 161.798
+L250.14 158.002
+L250.883 154.178
+L251.493 150.331
+L251.967 146.464
+L252.307 142.584
+L252.511 138.694
+L252.579 134.799
+L252.579 134.799" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="text_13">
+      <!-- 1.0 -->
+      <g transform="translate(244.083705828 90.0119039481)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-31"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+      </g>
+     </g>
+    </g>
+   </g>
+   <g id="patch_3">
+    <path d="
+M140.979 246.399
+C170.575 246.399 198.964 234.64 219.892 213.712
+C240.82 192.784 252.579 164.396 252.579 134.799
+C252.579 105.202 240.82 76.8139 219.892 55.8859
+C198.964 34.9579 170.575 23.1991 140.979 23.1991
+C111.382 23.1991 82.9936 34.9579 62.0656 55.8859
+C41.1376 76.8139 29.3788 105.202 29.3788 134.799
+C29.3788 164.396 41.1376 192.784 62.0656 213.712
+C82.9936 234.64 111.382 246.399 140.979 246.399
+z
+" style="fill:none;stroke:#000000;"/>
+   </g>
+  </g>
+ </g>
+ <defs>
+  <clipPath id="p66f81f3dfb">
+   <path d="
+M140.979 246.399
+C170.575 246.399 198.964 234.64 219.892 213.712
+C240.82 192.784 252.579 164.396 252.579 134.799
+C252.579 105.202 240.82 76.8139 219.892 55.8859
+C198.964 34.9579 170.575 23.1991 140.979 23.1991
+C111.382 23.1991 82.9936 34.9579 62.0656 55.8859
+C41.1376 76.8139 29.3788 105.202 29.3788 134.799
+C29.3788 164.396 41.1376 192.784 62.0656 213.712
+C82.9936 234.64 111.382 246.399 140.979 246.399
+z
+"/>
+  </clipPath>
+ </defs>
+</svg>
diff --git a/docs/figures/Coordinates_9_0.svg b/docs/figures/Coordinates_9_0.svg
new file mode 100644
index 0000000000000000000000000000000000000000..d870e294b8da08e5401794702060ee4530534a21
--- /dev/null
+++ b/docs/figures/Coordinates_9_0.svg
@@ -0,0 +1,939 @@
+<?xml version="1.0" encoding="utf-8" standalone="no"?>
+<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
+  "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
+<!-- Created with matplotlib (http://matplotlib.org/) -->
+<svg height="251pt" version="1.1" viewBox="0 0 375 251" width="375pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
+ <defs>
+  <style type="text/css">
+*{stroke-linecap:butt;stroke-linejoin:round;}
+  </style>
+ </defs>
+ <g id="figure_1">
+  <g id="patch_1">
+   <path d="
+M0 251.278
+L375.422 251.278
+L375.422 0
+L0 0
+z
+" style="fill:none;"/>
+  </g>
+  <g id="axes_1">
+   <g id="patch_2">
+    <path d="
+M33.4219 230.4
+L368.222 230.4
+L368.222 7.2
+L33.4219 7.2
+z
+" style="fill:none;"/>
+   </g>
+   <g id="patch_3">
+    <path clip-path="url(#pe880596f72)" d="
+M194.383 196.062
+C194.383 187.657 192.956 179.295 190.143 171.216
+C187.33 163.137 183.159 155.422 177.752 148.295" style="fill:none;stroke:#000000;"/>
+   </g>
+   <g id="patch_4">
+    <path clip-path="url(#pe880596f72)" d="
+M290.96 96.48
+C292.326 96.48 293.637 96.1182 294.602 95.4742
+C295.568 94.8303 296.111 93.9568 296.111 93.0462
+C296.111 92.1355 295.568 91.262 294.602 90.6181
+C293.637 89.9741 292.326 89.6123 290.96 89.6123
+C289.594 89.6123 288.284 89.9741 287.318 90.6181
+C286.352 91.262 285.81 92.1355 285.81 93.0462
+C285.81 93.9568 286.352 94.8303 287.318 95.4742
+C288.284 96.1182 289.594 96.48 290.96 96.48
+z
+" style="stroke:#000000;"/>
+   </g>
+   <g id="line2d_1">
+    <path clip-path="url(#pe880596f72)" d="
+M33.4219 196.062
+L368.222 196.062" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:2.0;"/>
+   </g>
+   <g id="line2d_2">
+    <path clip-path="url(#pe880596f72)" d="
+M84.9296 230.4
+L84.9296 7.2" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:2.0;"/>
+   </g>
+   <g id="line2d_3">
+    <path clip-path="url(#pe880596f72)" d="
+M84.9296 196.062
+L290.96 93.0462" style="fill:none;stroke:#0000ff;stroke-linecap:square;stroke-width:2;"/>
+   </g>
+   <g id="matplotlib.axis_1">
+    <g id="xtick_1">
+     <g id="line2d_4">
+      <path clip-path="url(#pe880596f72)" d="
+M33.4219 230.4
+L33.4219 7.2" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_5">
+      <defs>
+       <path d="
+M0 0
+L0 -4" id="m93b0483c22" style="stroke:#000000;stroke-width:0.5;"/>
+      </defs>
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="33.421875" xlink:href="#m93b0483c22" y="230.4"/>
+      </g>
+     </g>
+     <g id="line2d_6">
+      <defs>
+       <path d="
+M0 0
+L0 4" id="m741efc42ff" style="stroke:#000000;stroke-width:0.5;"/>
+      </defs>
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="33.421875" xlink:href="#m741efc42ff" y="7.2"/>
+      </g>
+     </g>
+     <g id="text_1">
+      <!-- −0.2 -->
+      <defs>
+       <path d="
+M31.7812 66.4062
+Q24.1719 66.4062 20.3281 58.9062
+Q16.5 51.4219 16.5 36.375
+Q16.5 21.3906 20.3281 13.8906
+Q24.1719 6.39062 31.7812 6.39062
+Q39.4531 6.39062 43.2812 13.8906
+Q47.125 21.3906 47.125 36.375
+Q47.125 51.4219 43.2812 58.9062
+Q39.4531 66.4062 31.7812 66.4062
+M31.7812 74.2188
+Q44.0469 74.2188 50.5156 64.5156
+Q56.9844 54.8281 56.9844 36.375
+Q56.9844 17.9688 50.5156 8.26562
+Q44.0469 -1.42188 31.7812 -1.42188
+Q19.5312 -1.42188 13.0625 8.26562
+Q6.59375 17.9688 6.59375 36.375
+Q6.59375 54.8281 13.0625 64.5156
+Q19.5312 74.2188 31.7812 74.2188" id="DejaVuSans-30"/>
+       <path d="
+M10.6875 12.4062
+L21 12.4062
+L21 0
+L10.6875 0
+z
+" id="DejaVuSans-2e"/>
+       <path d="
+M19.1875 8.29688
+L53.6094 8.29688
+L53.6094 0
+L7.32812 0
+L7.32812 8.29688
+Q12.9375 14.1094 22.625 23.8906
+Q32.3281 33.6875 34.8125 36.5312
+Q39.5469 41.8438 41.4219 45.5312
+Q43.3125 49.2188 43.3125 52.7812
+Q43.3125 58.5938 39.2344 62.25
+Q35.1562 65.9219 28.6094 65.9219
+Q23.9688 65.9219 18.8125 64.3125
+Q13.6719 62.7031 7.8125 59.4219
+L7.8125 69.3906
+Q13.7656 71.7812 18.9375 73
+Q24.125 74.2188 28.4219 74.2188
+Q39.75 74.2188 46.4844 68.5469
+Q53.2188 62.8906 53.2188 53.4219
+Q53.2188 48.9219 51.5312 44.8906
+Q49.8594 40.875 45.4062 35.4062
+Q44.1875 33.9844 37.6406 27.2188
+Q31.1094 20.4531 19.1875 8.29688" id="DejaVuSans-32"/>
+       <path d="
+M10.5938 35.5
+L73.1875 35.5
+L73.1875 27.2031
+L10.5938 27.2031
+z
+" id="DejaVuSans-2212"/>
+      </defs>
+      <g transform="translate(22.3109375 241.9984375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-2212"/>
+       <use x="83.7890625" xlink:href="#DejaVuSans-30"/>
+       <use x="147.412109375" xlink:href="#DejaVuSans-2e"/>
+       <use x="179.19921875" xlink:href="#DejaVuSans-32"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_2">
+     <g id="line2d_7">
+      <path clip-path="url(#pe880596f72)" d="
+M84.9296 230.4
+L84.9296 7.2" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_8">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="84.9295673077" xlink:href="#m93b0483c22" y="230.4"/>
+      </g>
+     </g>
+     <g id="line2d_9">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="84.9295673077" xlink:href="#m741efc42ff" y="7.2"/>
+      </g>
+     </g>
+     <g id="text_2">
+      <!-- 0.0 -->
+      <g transform="translate(77.6397235577 241.9984375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_3">
+     <g id="line2d_10">
+      <path clip-path="url(#pe880596f72)" d="
+M136.437 230.4
+L136.437 7.2" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_11">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="136.437259615" xlink:href="#m93b0483c22" y="230.4"/>
+      </g>
+     </g>
+     <g id="line2d_12">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="136.437259615" xlink:href="#m741efc42ff" y="7.2"/>
+      </g>
+     </g>
+     <g id="text_3">
+      <!-- 0.2 -->
+      <g transform="translate(129.316165865 241.9984375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-32"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_4">
+     <g id="line2d_13">
+      <path clip-path="url(#pe880596f72)" d="
+M187.945 230.4
+L187.945 7.2" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_14">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="187.944951923" xlink:href="#m93b0483c22" y="230.4"/>
+      </g>
+     </g>
+     <g id="line2d_15">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="187.944951923" xlink:href="#m741efc42ff" y="7.2"/>
+      </g>
+     </g>
+     <g id="text_4">
+      <!-- 0.4 -->
+      <defs>
+       <path d="
+M37.7969 64.3125
+L12.8906 25.3906
+L37.7969 25.3906
+z
+
+M35.2031 72.9062
+L47.6094 72.9062
+L47.6094 25.3906
+L58.0156 25.3906
+L58.0156 17.1875
+L47.6094 17.1875
+L47.6094 0
+L37.7969 0
+L37.7969 17.1875
+L4.89062 17.1875
+L4.89062 26.7031
+z
+" id="DejaVuSans-34"/>
+      </defs>
+      <g transform="translate(180.603545673 241.9984375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-34"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_5">
+     <g id="line2d_16">
+      <path clip-path="url(#pe880596f72)" d="
+M239.453 230.4
+L239.453 7.2" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_17">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="239.452644231" xlink:href="#m93b0483c22" y="230.4"/>
+      </g>
+     </g>
+     <g id="line2d_18">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="239.452644231" xlink:href="#m741efc42ff" y="7.2"/>
+      </g>
+     </g>
+     <g id="text_5">
+      <!-- 0.6 -->
+      <defs>
+       <path d="
+M33.0156 40.375
+Q26.375 40.375 22.4844 35.8281
+Q18.6094 31.2969 18.6094 23.3906
+Q18.6094 15.5312 22.4844 10.9531
+Q26.375 6.39062 33.0156 6.39062
+Q39.6562 6.39062 43.5312 10.9531
+Q47.4062 15.5312 47.4062 23.3906
+Q47.4062 31.2969 43.5312 35.8281
+Q39.6562 40.375 33.0156 40.375
+M52.5938 71.2969
+L52.5938 62.3125
+Q48.875 64.0625 45.0938 64.9844
+Q41.3125 65.9219 37.5938 65.9219
+Q27.8281 65.9219 22.6719 59.3281
+Q17.5312 52.7344 16.7969 39.4062
+Q19.6719 43.6562 24.0156 45.9219
+Q28.375 48.1875 33.5938 48.1875
+Q44.5781 48.1875 50.9531 41.5156
+Q57.3281 34.8594 57.3281 23.3906
+Q57.3281 12.1562 50.6875 5.35938
+Q44.0469 -1.42188 33.0156 -1.42188
+Q20.3594 -1.42188 13.6719 8.26562
+Q6.98438 17.9688 6.98438 36.375
+Q6.98438 53.6562 15.1875 63.9375
+Q23.3906 74.2188 37.2031 74.2188
+Q40.9219 74.2188 44.7031 73.4844
+Q48.4844 72.75 52.5938 71.2969" id="DejaVuSans-36"/>
+      </defs>
+      <g transform="translate(232.145612981 241.9984375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-36"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_6">
+     <g id="line2d_19">
+      <path clip-path="url(#pe880596f72)" d="
+M290.96 230.4
+L290.96 7.2" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_20">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="290.960336538" xlink:href="#m93b0483c22" y="230.4"/>
+      </g>
+     </g>
+     <g id="line2d_21">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="290.960336538" xlink:href="#m741efc42ff" y="7.2"/>
+      </g>
+     </g>
+     <g id="text_6">
+      <!-- 0.8 -->
+      <defs>
+       <path d="
+M31.7812 34.625
+Q24.75 34.625 20.7188 30.8594
+Q16.7031 27.0938 16.7031 20.5156
+Q16.7031 13.9219 20.7188 10.1562
+Q24.75 6.39062 31.7812 6.39062
+Q38.8125 6.39062 42.8594 10.1719
+Q46.9219 13.9688 46.9219 20.5156
+Q46.9219 27.0938 42.8906 30.8594
+Q38.875 34.625 31.7812 34.625
+M21.9219 38.8125
+Q15.5781 40.375 12.0312 44.7188
+Q8.5 49.0781 8.5 55.3281
+Q8.5 64.0625 14.7188 69.1406
+Q20.9531 74.2188 31.7812 74.2188
+Q42.6719 74.2188 48.875 69.1406
+Q55.0781 64.0625 55.0781 55.3281
+Q55.0781 49.0781 51.5312 44.7188
+Q48 40.375 41.7031 38.8125
+Q48.8281 37.1562 52.7969 32.3125
+Q56.7812 27.4844 56.7812 20.5156
+Q56.7812 9.90625 50.3125 4.23438
+Q43.8438 -1.42188 31.7812 -1.42188
+Q19.7344 -1.42188 13.25 4.23438
+Q6.78125 9.90625 6.78125 20.5156
+Q6.78125 27.4844 10.7812 32.3125
+Q14.7969 37.1562 21.9219 38.8125
+M18.3125 54.3906
+Q18.3125 48.7344 21.8438 45.5625
+Q25.3906 42.3906 31.7812 42.3906
+Q38.1406 42.3906 41.7188 45.5625
+Q45.3125 48.7344 45.3125 54.3906
+Q45.3125 60.0625 41.7188 63.2344
+Q38.1406 66.4062 31.7812 66.4062
+Q25.3906 66.4062 21.8438 63.2344
+Q18.3125 60.0625 18.3125 54.3906" id="DejaVuSans-38"/>
+      </defs>
+      <g transform="translate(283.680649038 241.9984375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-38"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_7">
+     <g id="line2d_22">
+      <path clip-path="url(#pe880596f72)" d="
+M342.468 230.4
+L342.468 7.2" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_23">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="342.468028846" xlink:href="#m93b0483c22" y="230.4"/>
+      </g>
+     </g>
+     <g id="line2d_24">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="342.468028846" xlink:href="#m741efc42ff" y="7.2"/>
+      </g>
+     </g>
+     <g id="text_7">
+      <!-- 1.0 -->
+      <defs>
+       <path d="
+M12.4062 8.29688
+L28.5156 8.29688
+L28.5156 63.9219
+L10.9844 60.4062
+L10.9844 69.3906
+L28.4219 72.9062
+L38.2812 72.9062
+L38.2812 8.29688
+L54.3906 8.29688
+L54.3906 0
+L12.4062 0
+z
+" id="DejaVuSans-31"/>
+      </defs>
+      <g transform="translate(335.397716346 241.9984375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-31"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+      </g>
+     </g>
+    </g>
+   </g>
+   <g id="matplotlib.axis_2">
+    <g id="ytick_1">
+     <g id="line2d_25">
+      <path clip-path="url(#pe880596f72)" d="
+M33.4219 230.4
+L368.222 230.4" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_26">
+      <defs>
+       <path d="
+M0 0
+L4 0" id="m728421d6d4" style="stroke:#000000;stroke-width:0.5;"/>
+      </defs>
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="33.421875" xlink:href="#m728421d6d4" y="230.4"/>
+      </g>
+     </g>
+     <g id="line2d_27">
+      <defs>
+       <path d="
+M0 0
+L-4 0" id="mcb0005524f" style="stroke:#000000;stroke-width:0.5;"/>
+      </defs>
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="368.221875" xlink:href="#mcb0005524f" y="230.4"/>
+      </g>
+     </g>
+     <g id="text_8">
+      <!-- −0.2 -->
+      <g transform="translate(7.2 233.159375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-2212"/>
+       <use x="83.7890625" xlink:href="#DejaVuSans-30"/>
+       <use x="147.412109375" xlink:href="#DejaVuSans-2e"/>
+       <use x="179.19921875" xlink:href="#DejaVuSans-32"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_2">
+     <g id="line2d_28">
+      <path clip-path="url(#pe880596f72)" d="
+M33.4219 196.062
+L368.222 196.062" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_29">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="33.421875" xlink:href="#m728421d6d4" y="196.061538462"/>
+      </g>
+     </g>
+     <g id="line2d_30">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="368.221875" xlink:href="#mcb0005524f" y="196.061538462"/>
+      </g>
+     </g>
+     <g id="text_9">
+      <!-- 0.0 -->
+      <g transform="translate(14.8421875 198.820913462)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_3">
+     <g id="line2d_31">
+      <path clip-path="url(#pe880596f72)" d="
+M33.4219 161.723
+L368.222 161.723" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_32">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="33.421875" xlink:href="#m728421d6d4" y="161.723076923"/>
+      </g>
+     </g>
+     <g id="line2d_33">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="368.221875" xlink:href="#mcb0005524f" y="161.723076923"/>
+      </g>
+     </g>
+     <g id="text_10">
+      <!-- 0.2 -->
+      <g transform="translate(15.1796875 164.482451923)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-32"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_4">
+     <g id="line2d_34">
+      <path clip-path="url(#pe880596f72)" d="
+M33.4219 127.385
+L368.222 127.385" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_35">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="33.421875" xlink:href="#m728421d6d4" y="127.384615385"/>
+      </g>
+     </g>
+     <g id="line2d_36">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="368.221875" xlink:href="#mcb0005524f" y="127.384615385"/>
+      </g>
+     </g>
+     <g id="text_11">
+      <!-- 0.4 -->
+      <g transform="translate(14.7390625 130.143990385)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-34"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_5">
+     <g id="line2d_37">
+      <path clip-path="url(#pe880596f72)" d="
+M33.4219 93.0462
+L368.222 93.0462" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_38">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="33.421875" xlink:href="#m728421d6d4" y="93.0461538462"/>
+      </g>
+     </g>
+     <g id="line2d_39">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="368.221875" xlink:href="#mcb0005524f" y="93.0461538462"/>
+      </g>
+     </g>
+     <g id="text_12">
+      <!-- 0.6 -->
+      <g transform="translate(14.8078125 95.8055288462)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-36"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_6">
+     <g id="line2d_40">
+      <path clip-path="url(#pe880596f72)" d="
+M33.4219 58.7077
+L368.222 58.7077" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_41">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="33.421875" xlink:href="#m728421d6d4" y="58.7076923077"/>
+      </g>
+     </g>
+     <g id="line2d_42">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="368.221875" xlink:href="#mcb0005524f" y="58.7076923077"/>
+      </g>
+     </g>
+     <g id="text_13">
+      <!-- 0.8 -->
+      <g transform="translate(14.8625 61.4670673077)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-38"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_7">
+     <g id="line2d_43">
+      <path clip-path="url(#pe880596f72)" d="
+M33.4219 24.3692
+L368.222 24.3692" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_44">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="33.421875" xlink:href="#m728421d6d4" y="24.3692307692"/>
+      </g>
+     </g>
+     <g id="line2d_45">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="368.221875" xlink:href="#mcb0005524f" y="24.3692307692"/>
+      </g>
+     </g>
+     <g id="text_14">
+      <!-- 1.0 -->
+      <g transform="translate(15.28125 27.1286057692)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-31"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+      </g>
+     </g>
+    </g>
+   </g>
+   <g id="patch_5">
+    <path d="
+M33.4219 7.2
+L368.222 7.2" style="fill:none;stroke:#000000;"/>
+   </g>
+   <g id="patch_6">
+    <path d="
+M368.222 230.4
+L368.222 7.2" style="fill:none;stroke:#000000;"/>
+   </g>
+   <g id="patch_7">
+    <path d="
+M33.4219 230.4
+L368.222 230.4" style="fill:none;stroke:#000000;"/>
+   </g>
+   <g id="patch_8">
+    <path d="
+M33.4219 230.4
+L33.4219 7.2" style="fill:none;stroke:#000000;"/>
+   </g>
+   <g id="text_15">
+    <!-- $r$ -->
+    <defs>
+     <path d="
+M7.71875 1.70312
+Q7.71875 2.29688 7.8125 2.59375
+L15.2812 32.4219
+Q16.0156 35.2031 16.0156 37.3125
+Q16.0156 41.6094 13.0938 41.6094
+Q9.96875 41.6094 8.45312 37.8594
+Q6.9375 34.125 5.51562 28.4219
+Q5.51562 28.125 5.21875 27.9531
+Q4.9375 27.7812 4.6875 27.7812
+L3.51562 27.7812
+Q3.17188 27.7812 2.92188 28.1406
+Q2.6875 28.5156 2.6875 28.8125
+Q3.76562 33.1562 4.76562 36.1719
+Q5.76562 39.2031 7.89062 41.6875
+Q10.0156 44.1875 13.1875 44.1875
+Q16.6562 44.1875 19.2656 42.1875
+Q21.875 40.1875 22.5156 36.9219
+Q25.0469 40.2344 28.2969 42.2031
+Q31.5469 44.1875 35.4062 44.1875
+Q38.5781 44.1875 40.9844 42.3281
+Q43.4062 40.4844 43.4062 37.3125
+Q43.4062 34.7656 41.8125 32.875
+Q40.2344 31 37.5938 31
+Q35.9844 31 34.8906 32
+Q33.7969 33.0156 33.7969 34.625
+Q33.7969 36.8125 35.4062 38.5469
+Q37.0156 40.2812 39.1094 40.2812
+Q37.5 41.6094 35.2031 41.6094
+Q30.9062 41.6094 27.7344 38.5469
+Q24.5625 35.5 22.0156 30.8125
+L14.8906 2.20312
+Q14.5469 0.828125 13.3438 -0.140625
+Q12.1562 -1.125 10.6875 -1.125
+Q9.46875 -1.125 8.59375 -0.34375
+Q7.71875 0.4375 7.71875 1.70312" id="Cmmi10-72"/>
+    </defs>
+    <g transform="translate(187.944951923 127.384615385)scale(0.3 -0.3)">
+     <use transform="translate(0.0 0.8125)" xlink:href="#Cmmi10-72"/>
+    </g>
+   </g>
+   <g id="text_16">
+    <!-- $\varphi$ -->
+    <defs>
+     <path d="
+M16.3125 -19
+Q16.3125 -18.6094 16.5 -17.8281
+L22.125 -0.203125
+Q14.6562 1.65625 9.8125 6.6875
+Q4.98438 11.7188 4.98438 19
+Q4.98438 22.6562 6.34375 27.25
+Q7.71875 31.8438 9.85938 35.9688
+Q12.0156 40.0938 14.5 42.8281
+Q15.0938 43.1094 15.1875 43.1094
+L16.4062 43.1094
+Q16.7031 43.1094 16.9375 42.8125
+Q17.1875 42.5312 17.1875 42.1875
+Q17.1875 41.7969 17 41.6094
+Q15.3281 39.7969 13.7344 37.1875
+Q12.1562 34.5781 10.9062 31.6875
+Q9.67188 28.8125 8.84375 25.6406
+Q8.01562 22.4688 8.01562 20.125
+Q8.01562 14.2031 12.7188 10.5625
+Q17.4375 6.9375 23.875 5.71875
+L26.7031 14.7031
+Q28.5625 20.5156 30.3906 25.0781
+Q32.2344 29.6406 34.9844 34
+Q37.75 38.375 41.6562 41.2812
+Q45.5625 44.1875 50.3906 44.1875
+Q54.2031 44.1875 56.7656 42.2812
+Q59.3281 40.375 60.5625 37.2031
+Q61.8125 34.0312 61.8125 30.4219
+Q61.8125 24.4688 59.1719 18.7812
+Q56.5469 13.0938 51.9531 8.5625
+Q47.3594 4.04688 41.5938 1.45312
+Q35.8438 -1.125 29.9844 -1.125
+Q29.2031 -1.07812 28.2969 -1.03125
+Q27.3906 -0.984375 26.8125 -0.984375
+L23.4844 -18.4062
+Q23.1875 -19.875 21.9844 -20.8281
+Q20.7969 -21.7812 19.2812 -21.7812
+Q18.0625 -21.7812 17.1875 -21.0156
+Q16.3125 -20.2656 16.3125 -19
+M27.875 5.17188
+Q29 5.07812 31.1094 5.07812
+Q37.3125 5.07812 43.7188 8.125
+Q50.1406 11.1875 54.3594 16.5
+Q58.5938 21.8281 58.5938 28.0781
+Q58.5938 30.9062 57.4375 33.1562
+Q56.2969 35.4062 54.2188 36.6875
+Q52.1562 37.9844 49.4219 37.9844
+Q41.6562 37.9844 36.4219 30.4688
+Q31.2031 22.9531 29.5938 14.3125
+z
+" id="Cmmi10-27"/>
+    </defs>
+    <g transform="translate(187.944951923 166.873846154)scale(0.3 -0.3)">
+     <use transform="translate(0.0 0.8125)" xlink:href="#Cmmi10-27"/>
+    </g>
+   </g>
+   <g id="text_17">
+    <!-- $x\; \rightarrow$ -->
+    <defs>
+     <path d="
+M7.8125 2.875
+Q9.57812 1.51562 12.7969 1.51562
+Q15.9219 1.51562 18.3125 4.51562
+Q20.7031 7.51562 21.5781 11.0781
+L26.125 28.8125
+Q27.2031 33.6406 27.2031 35.4062
+Q27.2031 37.8906 25.8125 39.75
+Q24.4219 41.6094 21.9219 41.6094
+Q18.75 41.6094 15.9688 39.625
+Q13.1875 37.6406 11.2812 34.5938
+Q9.375 31.5469 8.59375 28.4219
+Q8.40625 27.7812 7.8125 27.7812
+L6.59375 27.7812
+Q5.8125 27.7812 5.8125 28.7188
+L5.8125 29
+Q6.78125 32.7188 9.125 36.25
+Q11.4688 39.7969 14.8594 41.9844
+Q18.2656 44.1875 22.125 44.1875
+Q25.7812 44.1875 28.7344 42.2344
+Q31.6875 40.2812 32.9062 36.9219
+Q34.625 39.9844 37.2812 42.0781
+Q39.9375 44.1875 43.1094 44.1875
+Q45.2656 44.1875 47.5 43.4219
+Q49.75 42.6719 51.1719 41.1094
+Q52.5938 39.5469 52.5938 37.2031
+Q52.5938 34.6719 50.9531 32.8281
+Q49.3125 31 46.7812 31
+Q45.1719 31 44.0938 32.0312
+Q43.0156 33.0625 43.0156 34.625
+Q43.0156 36.7188 44.4531 38.2969
+Q45.9062 39.8906 47.9062 40.1875
+Q46.0938 41.6094 42.9219 41.6094
+Q39.7031 41.6094 37.3281 38.625
+Q34.9688 35.6406 33.9844 31.9844
+L29.5938 14.3125
+Q28.5156 10.2969 28.5156 7.71875
+Q28.5156 5.17188 29.9531 3.34375
+Q31.3906 1.51562 33.7969 1.51562
+Q38.4844 1.51562 42.1562 5.64062
+Q45.8438 9.76562 47.0156 14.7031
+Q47.2188 15.2812 47.7969 15.2812
+L49.0312 15.2812
+Q49.4219 15.2812 49.6562 15.0156
+Q49.9062 14.75 49.9062 14.4062
+Q49.9062 14.3125 49.8125 14.1094
+Q48.3906 8.15625 43.8438 3.51562
+Q39.3125 -1.125 33.5938 -1.125
+Q29.9375 -1.125 26.9844 0.84375
+Q24.0312 2.82812 22.7969 6.20312
+Q21.2344 3.26562 18.4688 1.0625
+Q15.7188 -1.125 12.5938 -1.125
+Q10.4531 -1.125 8.17188 -0.359375
+Q5.90625 0.390625 4.48438 1.95312
+Q3.07812 3.51562 3.07812 5.90625
+Q3.07812 8.25 4.70312 10.1719
+Q6.34375 12.1094 8.79688 12.1094
+Q10.4531 12.1094 11.5781 11.1094
+Q12.7031 10.1094 12.7031 8.5
+Q12.7031 6.39062 11.2969 4.82812
+Q9.90625 3.26562 7.8125 2.875" id="Cmmi10-78"/>
+     <path d="
+M7.51562 23
+Q6.6875 23 6.14062 23.625
+Q5.60938 24.2656 5.60938 25
+Q5.60938 25.7344 6.14062 26.3594
+Q6.6875 27 7.51562 27
+L83.4062 27
+Q79.5938 29.7344 76.6562 33.3281
+Q73.7344 36.9219 71.7812 41.0469
+Q69.8281 45.1719 69 49.8125
+Q69 51.125 70.0156 51.125
+L72.0156 51.125
+Q72.3594 51.125 72.625 50.8281
+Q72.9062 50.5312 73 50.2031
+Q73.8281 45.9062 75.6094 42.2188
+Q77.3906 38.5312 80.0781 35.3438
+Q82.7656 32.1719 86.0781 29.875
+Q89.4062 27.5938 93.6094 26.125
+Q94.2812 25.6875 94.2812 25
+Q94.2812 24.2188 93.6094 24.0312
+Q88.375 22.2188 84.0312 18.625
+Q79.6875 15.0469 76.8594 10.1875
+Q74.0312 5.32812 73 -0.203125
+Q72.9062 -0.53125 72.6094 -0.828125
+Q72.3125 -1.125 72.0156 -1.125
+L70.0156 -1.125
+Q69 -1.125 69 0.203125
+Q70.2656 7.03125 74.0625 13.0625
+Q77.875 19.0938 83.4062 23
+z
+" id="Cmsy10-21"/>
+    </defs>
+    <g transform="translate(265.206490385 213.230769231)scale(0.24 -0.24)">
+     <use transform="translate(0.0 0.875)" xlink:href="#Cmmi10-78"/>
+     <use transform="translate(144.873046875 0.875)" xlink:href="#Cmsy10-21"/>
+    </g>
+   </g>
+   <g id="text_18">
+    <!-- $y$ -->
+    <defs>
+     <path d="
+M8.40625 -14.3125
+Q10.5 -17.9219 15.7188 -17.9219
+Q20.4531 -17.9219 23.9219 -14.5938
+Q27.3906 -11.2812 29.5156 -6.5625
+Q31.6406 -1.85938 32.8125 3.07812
+Q28.375 -1.125 23.1875 -1.125
+Q19.2344 -1.125 16.4531 0.234375
+Q13.6719 1.60938 12.125 4.3125
+Q10.5938 7.03125 10.5938 10.8906
+Q10.5938 14.1562 11.4688 17.5938
+Q12.3594 21.0469 13.9375 25.2656
+Q15.5312 29.5 16.7031 32.625
+Q18.0156 36.2812 18.0156 38.625
+Q18.0156 41.6094 15.8281 41.6094
+Q11.8594 41.6094 9.29688 37.5312
+Q6.73438 33.4531 5.51562 28.4219
+Q5.32812 27.7812 4.6875 27.7812
+L3.51562 27.7812
+Q2.6875 27.7812 2.6875 28.7188
+L2.6875 29
+Q4.29688 34.9688 7.60938 39.5781
+Q10.9375 44.1875 16.0156 44.1875
+Q19.5781 44.1875 22.0469 41.8438
+Q24.5156 39.5 24.5156 35.8906
+Q24.5156 34.0312 23.6875 31.9844
+Q23.25 30.7656 21.6875 26.6562
+Q20.125 22.5625 19.2812 19.875
+Q18.4531 17.1875 17.9219 14.5938
+Q17.3906 12.0156 17.3906 9.42188
+Q17.3906 6.10938 18.7969 3.8125
+Q20.2188 1.51562 23.2969 1.51562
+Q29.5 1.51562 34.4219 9.07812
+L42 39.8906
+Q42.3281 41.2188 43.5469 42.1562
+Q44.7812 43.1094 46.1875 43.1094
+Q47.4062 43.1094 48.3125 42.3281
+Q49.2188 41.5469 49.2188 40.2812
+Q49.2188 39.7031 49.125 39.5
+L39.2031 -0.296875
+Q37.8906 -5.42188 34.375 -10.1094
+Q30.8594 -14.7969 25.9062 -17.6562
+Q20.9531 -20.5156 15.5781 -20.5156
+Q12.9844 -20.5156 10.4375 -19.5
+Q7.90625 -18.5 6.34375 -16.5
+Q4.78125 -14.5 4.78125 -11.8125
+Q4.78125 -9.07812 6.39062 -7.07812
+Q8.01562 -5.07812 10.6875 -5.07812
+Q12.3125 -5.07812 13.4062 -6.07812
+Q14.5 -7.07812 14.5 -8.6875
+Q14.5 -10.9844 12.7812 -12.6875
+Q11.0781 -14.4062 8.79688 -14.4062
+Q8.6875 -14.3594 8.59375 -14.3281
+Q8.5 -14.3125 8.40625 -14.3125" id="Cmmi10-79"/>
+    </defs>
+    <g transform="translate(59.1757211538 93.0461538462)scale(0.24 -0.24)">
+     <use transform="translate(0.0 0.8125)" xlink:href="#Cmmi10-79"/>
+    </g>
+   </g>
+   <g id="text_19">
+    <!-- $\uparrow$ -->
+    <defs>
+     <path d="
+M23 -17.5781
+L23 55.6094
+Q20.75 51.9062 17.7031 49.0625
+Q14.6562 46.2344 10.9062 44.25
+Q7.17188 42.2812 3.07812 41.4062
+Q2.875 41.3125 2.78125 41.3125
+Q1.70312 41.3125 1.70312 42.1875
+L1.70312 44.3906
+Q1.70312 45.0625 2.39062 45.3125
+Q8.01562 46.5781 12.5938 49.875
+Q17.1875 53.1719 20.1094 57.9375
+Q23.0469 62.7031 23.875 68.5
+Q24.0781 68.9531 24.3594 69.1719
+Q24.6562 69.3906 25 69.3906
+Q25.3438 69.3906 25.6875 69.1094
+Q26.0312 68.8438 26.125 68.5
+Q27.2969 60.0156 33.2031 53.6094
+Q39.1094 47.2188 47.6094 45.3125
+Q47.9062 45.2188 48.0938 44.8906
+Q48.2969 44.5781 48.2969 44.3906
+L48.2969 42.1875
+Q48.2969 41.8906 47.9531 41.5938
+Q47.6094 41.3125 47.2188 41.3125
+Q47.125 41.3125 46.9219 41.4062
+Q42.8281 42.2812 39.0938 44.25
+Q35.3594 46.2344 32.2969 49.0625
+Q29.25 51.9062 27 55.6094
+L27 -17.5781
+Q27 -18.3594 26.3594 -18.875
+Q25.7344 -19.3906 25 -19.3906
+Q24.2656 -19.3906 23.625 -18.875
+Q23 -18.3594 23 -17.5781" id="Cmsy10-22"/>
+    </defs>
+    <g transform="translate(59.1757211538 58.7076923077)scale(0.24 -0.24)">
+     <use transform="translate(17.55859375 0.609375)" xlink:href="#Cmsy10-22"/>
+    </g>
+   </g>
+  </g>
+ </g>
+ <defs>
+  <clipPath id="pe880596f72">
+   <rect height="223.2" width="334.8" x="33.421875" y="7.2"/>
+  </clipPath>
+ </defs>
+</svg>
diff --git a/docs/figures/DE2_1.png b/docs/figures/DE2_1.png
new file mode 100644
index 0000000000000000000000000000000000000000..3c981788d84e102f35911d13f30b2cd79697ab99
Binary files /dev/null and b/docs/figures/DE2_1.png differ
diff --git a/docs/figures/Phase_portrait_with_cars.png b/docs/figures/Phase_portrait_with_cars.png
new file mode 100644
index 0000000000000000000000000000000000000000..e8059f25620732400ba13a1d644d0ebdfee584e4
Binary files /dev/null and b/docs/figures/Phase_portrait_with_cars.png differ
diff --git a/docs/figures/complex_numbers_10_0.svg b/docs/figures/complex_numbers_10_0.svg
new file mode 100644
index 0000000000000000000000000000000000000000..2b54807609d166f89127e25df143a0f6675c5241
--- /dev/null
+++ b/docs/figures/complex_numbers_10_0.svg
@@ -0,0 +1,917 @@
+<?xml version="1.0" encoding="utf-8" standalone="no"?>
+<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
+  "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
+<!-- Created with matplotlib (http://matplotlib.org/) -->
+<svg height="251pt" version="1.1" viewBox="0 0 375 251" width="375pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
+ <defs>
+  <style type="text/css">
+*{stroke-linecap:butt;stroke-linejoin:round;}
+  </style>
+ </defs>
+ <g id="figure_1">
+  <g id="patch_1">
+   <path d="
+M0 251.278
+L375.422 251.278
+L375.422 0
+L0 0
+z
+" style="fill:none;"/>
+  </g>
+  <g id="axes_1">
+   <g id="patch_2">
+    <path d="
+M33.4219 230.4
+L368.222 230.4
+L368.222 7.2
+L33.4219 7.2
+z
+" style="fill:none;"/>
+   </g>
+   <g id="patch_3">
+    <path clip-path="url(#pe880596f72)" d="
+M206.8 182.571
+C206.8 174.768 205.475 167.002 202.863 159.501
+C200.251 151.999 196.378 144.835 191.357 138.217" style="fill:none;stroke:#000000;"/>
+   </g>
+   <g id="patch_4">
+    <path clip-path="url(#pe880596f72)" d="
+M296.479 86.9143
+L280.935 99.6686
+L277.419 96.5438
+L105.236 182.635
+L105.093 182.508
+L277.276 96.4162
+L273.76 93.2914
+z
+" style="fill:#0000ff;stroke:#0000ff;stroke-width:2;"/>
+   </g>
+   <g id="line2d_1">
+    <path clip-path="url(#pe880596f72)" d="
+M33.4219 182.571
+L368.222 182.571" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:2.0;"/>
+   </g>
+   <g id="line2d_2">
+    <path clip-path="url(#pe880596f72)" d="
+M105.165 230.4
+L105.165 7.2" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:2.0;"/>
+   </g>
+   <g id="line2d_3">
+    <path clip-path="url(#pe880596f72)" d="
+M296.479 182.571
+L296.479 86.9143" style="fill:none;stroke:#0000ff;stroke-linecap:square;"/>
+   </g>
+   <g id="line2d_4">
+    <path clip-path="url(#pe880596f72)" d="
+M105.165 86.9143
+L296.479 86.9143" style="fill:none;stroke:#0000ff;stroke-linecap:square;"/>
+   </g>
+   <g id="matplotlib.axis_1">
+    <g id="xtick_1">
+     <g id="line2d_5">
+      <path clip-path="url(#pe880596f72)" d="
+M57.3362 230.4
+L57.3362 7.2" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_6">
+      <defs>
+       <path d="
+M0 0
+L0 -4" id="m93b0483c22" style="stroke:#000000;stroke-width:0.5;"/>
+      </defs>
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="57.3361607143" xlink:href="#m93b0483c22" y="230.4"/>
+      </g>
+     </g>
+     <g id="line2d_7">
+      <defs>
+       <path d="
+M0 0
+L0 4" id="m741efc42ff" style="stroke:#000000;stroke-width:0.5;"/>
+      </defs>
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="57.3361607143" xlink:href="#m741efc42ff" y="7.2"/>
+      </g>
+     </g>
+     <g id="text_1">
+      <!-- −0.2 -->
+      <defs>
+       <path d="
+M31.7812 66.4062
+Q24.1719 66.4062 20.3281 58.9062
+Q16.5 51.4219 16.5 36.375
+Q16.5 21.3906 20.3281 13.8906
+Q24.1719 6.39062 31.7812 6.39062
+Q39.4531 6.39062 43.2812 13.8906
+Q47.125 21.3906 47.125 36.375
+Q47.125 51.4219 43.2812 58.9062
+Q39.4531 66.4062 31.7812 66.4062
+M31.7812 74.2188
+Q44.0469 74.2188 50.5156 64.5156
+Q56.9844 54.8281 56.9844 36.375
+Q56.9844 17.9688 50.5156 8.26562
+Q44.0469 -1.42188 31.7812 -1.42188
+Q19.5312 -1.42188 13.0625 8.26562
+Q6.59375 17.9688 6.59375 36.375
+Q6.59375 54.8281 13.0625 64.5156
+Q19.5312 74.2188 31.7812 74.2188" id="DejaVuSans-30"/>
+       <path d="
+M10.6875 12.4062
+L21 12.4062
+L21 0
+L10.6875 0
+z
+" id="DejaVuSans-2e"/>
+       <path d="
+M19.1875 8.29688
+L53.6094 8.29688
+L53.6094 0
+L7.32812 0
+L7.32812 8.29688
+Q12.9375 14.1094 22.625 23.8906
+Q32.3281 33.6875 34.8125 36.5312
+Q39.5469 41.8438 41.4219 45.5312
+Q43.3125 49.2188 43.3125 52.7812
+Q43.3125 58.5938 39.2344 62.25
+Q35.1562 65.9219 28.6094 65.9219
+Q23.9688 65.9219 18.8125 64.3125
+Q13.6719 62.7031 7.8125 59.4219
+L7.8125 69.3906
+Q13.7656 71.7812 18.9375 73
+Q24.125 74.2188 28.4219 74.2188
+Q39.75 74.2188 46.4844 68.5469
+Q53.2188 62.8906 53.2188 53.4219
+Q53.2188 48.9219 51.5312 44.8906
+Q49.8594 40.875 45.4062 35.4062
+Q44.1875 33.9844 37.6406 27.2188
+Q31.1094 20.4531 19.1875 8.29688" id="DejaVuSans-32"/>
+       <path d="
+M10.5938 35.5
+L73.1875 35.5
+L73.1875 27.2031
+L10.5938 27.2031
+z
+" id="DejaVuSans-2212"/>
+      </defs>
+      <g transform="translate(46.2252232143 241.9984375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-2212"/>
+       <use x="83.7890625" xlink:href="#DejaVuSans-30"/>
+       <use x="147.412109375" xlink:href="#DejaVuSans-2e"/>
+       <use x="179.19921875" xlink:href="#DejaVuSans-32"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_2">
+     <g id="line2d_8">
+      <path clip-path="url(#pe880596f72)" d="
+M105.165 230.4
+L105.165 7.2" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_9">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="105.164732143" xlink:href="#m93b0483c22" y="230.4"/>
+      </g>
+     </g>
+     <g id="line2d_10">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="105.164732143" xlink:href="#m741efc42ff" y="7.2"/>
+      </g>
+     </g>
+     <g id="text_2">
+      <!-- 0.0 -->
+      <g transform="translate(97.8748883929 241.9984375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_3">
+     <g id="line2d_11">
+      <path clip-path="url(#pe880596f72)" d="
+M152.993 230.4
+L152.993 7.2" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_12">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="152.993303571" xlink:href="#m93b0483c22" y="230.4"/>
+      </g>
+     </g>
+     <g id="line2d_13">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="152.993303571" xlink:href="#m741efc42ff" y="7.2"/>
+      </g>
+     </g>
+     <g id="text_3">
+      <!-- 0.2 -->
+      <g transform="translate(145.872209821 241.9984375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-32"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_4">
+     <g id="line2d_14">
+      <path clip-path="url(#pe880596f72)" d="
+M200.822 230.4
+L200.822 7.2" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_15">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="200.821875" xlink:href="#m93b0483c22" y="230.4"/>
+      </g>
+     </g>
+     <g id="line2d_16">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="200.821875" xlink:href="#m741efc42ff" y="7.2"/>
+      </g>
+     </g>
+     <g id="text_4">
+      <!-- 0.4 -->
+      <defs>
+       <path d="
+M37.7969 64.3125
+L12.8906 25.3906
+L37.7969 25.3906
+z
+
+M35.2031 72.9062
+L47.6094 72.9062
+L47.6094 25.3906
+L58.0156 25.3906
+L58.0156 17.1875
+L47.6094 17.1875
+L47.6094 0
+L37.7969 0
+L37.7969 17.1875
+L4.89062 17.1875
+L4.89062 26.7031
+z
+" id="DejaVuSans-34"/>
+      </defs>
+      <g transform="translate(193.48046875 241.9984375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-34"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_5">
+     <g id="line2d_17">
+      <path clip-path="url(#pe880596f72)" d="
+M248.65 230.4
+L248.65 7.2" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_18">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="248.650446429" xlink:href="#m93b0483c22" y="230.4"/>
+      </g>
+     </g>
+     <g id="line2d_19">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="248.650446429" xlink:href="#m741efc42ff" y="7.2"/>
+      </g>
+     </g>
+     <g id="text_5">
+      <!-- 0.6 -->
+      <defs>
+       <path d="
+M33.0156 40.375
+Q26.375 40.375 22.4844 35.8281
+Q18.6094 31.2969 18.6094 23.3906
+Q18.6094 15.5312 22.4844 10.9531
+Q26.375 6.39062 33.0156 6.39062
+Q39.6562 6.39062 43.5312 10.9531
+Q47.4062 15.5312 47.4062 23.3906
+Q47.4062 31.2969 43.5312 35.8281
+Q39.6562 40.375 33.0156 40.375
+M52.5938 71.2969
+L52.5938 62.3125
+Q48.875 64.0625 45.0938 64.9844
+Q41.3125 65.9219 37.5938 65.9219
+Q27.8281 65.9219 22.6719 59.3281
+Q17.5312 52.7344 16.7969 39.4062
+Q19.6719 43.6562 24.0156 45.9219
+Q28.375 48.1875 33.5938 48.1875
+Q44.5781 48.1875 50.9531 41.5156
+Q57.3281 34.8594 57.3281 23.3906
+Q57.3281 12.1562 50.6875 5.35938
+Q44.0469 -1.42188 33.0156 -1.42188
+Q20.3594 -1.42188 13.6719 8.26562
+Q6.98438 17.9688 6.98438 36.375
+Q6.98438 53.6562 15.1875 63.9375
+Q23.3906 74.2188 37.2031 74.2188
+Q40.9219 74.2188 44.7031 73.4844
+Q48.4844 72.75 52.5938 71.2969" id="DejaVuSans-36"/>
+      </defs>
+      <g transform="translate(241.343415179 241.9984375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-36"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_6">
+     <g id="line2d_20">
+      <path clip-path="url(#pe880596f72)" d="
+M296.479 230.4
+L296.479 7.2" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_21">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="296.479017857" xlink:href="#m93b0483c22" y="230.4"/>
+      </g>
+     </g>
+     <g id="line2d_22">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="296.479017857" xlink:href="#m741efc42ff" y="7.2"/>
+      </g>
+     </g>
+     <g id="text_6">
+      <!-- 0.8 -->
+      <defs>
+       <path d="
+M31.7812 34.625
+Q24.75 34.625 20.7188 30.8594
+Q16.7031 27.0938 16.7031 20.5156
+Q16.7031 13.9219 20.7188 10.1562
+Q24.75 6.39062 31.7812 6.39062
+Q38.8125 6.39062 42.8594 10.1719
+Q46.9219 13.9688 46.9219 20.5156
+Q46.9219 27.0938 42.8906 30.8594
+Q38.875 34.625 31.7812 34.625
+M21.9219 38.8125
+Q15.5781 40.375 12.0312 44.7188
+Q8.5 49.0781 8.5 55.3281
+Q8.5 64.0625 14.7188 69.1406
+Q20.9531 74.2188 31.7812 74.2188
+Q42.6719 74.2188 48.875 69.1406
+Q55.0781 64.0625 55.0781 55.3281
+Q55.0781 49.0781 51.5312 44.7188
+Q48 40.375 41.7031 38.8125
+Q48.8281 37.1562 52.7969 32.3125
+Q56.7812 27.4844 56.7812 20.5156
+Q56.7812 9.90625 50.3125 4.23438
+Q43.8438 -1.42188 31.7812 -1.42188
+Q19.7344 -1.42188 13.25 4.23438
+Q6.78125 9.90625 6.78125 20.5156
+Q6.78125 27.4844 10.7812 32.3125
+Q14.7969 37.1562 21.9219 38.8125
+M18.3125 54.3906
+Q18.3125 48.7344 21.8438 45.5625
+Q25.3906 42.3906 31.7812 42.3906
+Q38.1406 42.3906 41.7188 45.5625
+Q45.3125 48.7344 45.3125 54.3906
+Q45.3125 60.0625 41.7188 63.2344
+Q38.1406 66.4062 31.7812 66.4062
+Q25.3906 66.4062 21.8438 63.2344
+Q18.3125 60.0625 18.3125 54.3906" id="DejaVuSans-38"/>
+      </defs>
+      <g transform="translate(289.199330357 241.9984375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-38"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_7">
+     <g id="line2d_23">
+      <path clip-path="url(#pe880596f72)" d="
+M344.308 230.4
+L344.308 7.2" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_24">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="344.307589286" xlink:href="#m93b0483c22" y="230.4"/>
+      </g>
+     </g>
+     <g id="line2d_25">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="344.307589286" xlink:href="#m741efc42ff" y="7.2"/>
+      </g>
+     </g>
+     <g id="text_7">
+      <!-- 1.0 -->
+      <defs>
+       <path d="
+M12.4062 8.29688
+L28.5156 8.29688
+L28.5156 63.9219
+L10.9844 60.4062
+L10.9844 69.3906
+L28.4219 72.9062
+L38.2812 72.9062
+L38.2812 8.29688
+L54.3906 8.29688
+L54.3906 0
+L12.4062 0
+z
+" id="DejaVuSans-31"/>
+      </defs>
+      <g transform="translate(337.237276786 241.9984375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-31"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+      </g>
+     </g>
+    </g>
+   </g>
+   <g id="matplotlib.axis_2">
+    <g id="ytick_1">
+     <g id="line2d_26">
+      <path clip-path="url(#pe880596f72)" d="
+M33.4219 214.457
+L368.222 214.457" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_27">
+      <defs>
+       <path d="
+M0 0
+L4 0" id="m728421d6d4" style="stroke:#000000;stroke-width:0.5;"/>
+      </defs>
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="33.421875" xlink:href="#m728421d6d4" y="214.457142857"/>
+      </g>
+     </g>
+     <g id="line2d_28">
+      <defs>
+       <path d="
+M0 0
+L-4 0" id="mcb0005524f" style="stroke:#000000;stroke-width:0.5;"/>
+      </defs>
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="368.221875" xlink:href="#mcb0005524f" y="214.457142857"/>
+      </g>
+     </g>
+     <g id="text_8">
+      <!-- −0.2 -->
+      <g transform="translate(7.2 217.216517857)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-2212"/>
+       <use x="83.7890625" xlink:href="#DejaVuSans-30"/>
+       <use x="147.412109375" xlink:href="#DejaVuSans-2e"/>
+       <use x="179.19921875" xlink:href="#DejaVuSans-32"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_2">
+     <g id="line2d_29">
+      <path clip-path="url(#pe880596f72)" d="
+M33.4219 182.571
+L368.222 182.571" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_30">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="33.421875" xlink:href="#m728421d6d4" y="182.571428571"/>
+      </g>
+     </g>
+     <g id="line2d_31">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="368.221875" xlink:href="#mcb0005524f" y="182.571428571"/>
+      </g>
+     </g>
+     <g id="text_9">
+      <!-- 0.0 -->
+      <g transform="translate(14.8421875 185.330803571)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_3">
+     <g id="line2d_32">
+      <path clip-path="url(#pe880596f72)" d="
+M33.4219 150.686
+L368.222 150.686" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_33">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="33.421875" xlink:href="#m728421d6d4" y="150.685714286"/>
+      </g>
+     </g>
+     <g id="line2d_34">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="368.221875" xlink:href="#mcb0005524f" y="150.685714286"/>
+      </g>
+     </g>
+     <g id="text_10">
+      <!-- 0.2 -->
+      <g transform="translate(15.1796875 153.445089286)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-32"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_4">
+     <g id="line2d_35">
+      <path clip-path="url(#pe880596f72)" d="
+M33.4219 118.8
+L368.222 118.8" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_36">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="33.421875" xlink:href="#m728421d6d4" y="118.8"/>
+      </g>
+     </g>
+     <g id="line2d_37">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="368.221875" xlink:href="#mcb0005524f" y="118.8"/>
+      </g>
+     </g>
+     <g id="text_11">
+      <!-- 0.4 -->
+      <g transform="translate(14.7390625 121.559375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-34"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_5">
+     <g id="line2d_38">
+      <path clip-path="url(#pe880596f72)" d="
+M33.4219 86.9143
+L368.222 86.9143" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_39">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="33.421875" xlink:href="#m728421d6d4" y="86.9142857143"/>
+      </g>
+     </g>
+     <g id="line2d_40">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="368.221875" xlink:href="#mcb0005524f" y="86.9142857143"/>
+      </g>
+     </g>
+     <g id="text_12">
+      <!-- 0.6 -->
+      <g transform="translate(14.8078125 89.6736607143)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-36"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_6">
+     <g id="line2d_41">
+      <path clip-path="url(#pe880596f72)" d="
+M33.4219 55.0286
+L368.222 55.0286" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_42">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="33.421875" xlink:href="#m728421d6d4" y="55.0285714286"/>
+      </g>
+     </g>
+     <g id="line2d_43">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="368.221875" xlink:href="#mcb0005524f" y="55.0285714286"/>
+      </g>
+     </g>
+     <g id="text_13">
+      <!-- 0.8 -->
+      <g transform="translate(14.8625 57.7879464286)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-38"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_7">
+     <g id="line2d_44">
+      <path clip-path="url(#pe880596f72)" d="
+M33.4219 23.1429
+L368.222 23.1429" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_45">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="33.421875" xlink:href="#m728421d6d4" y="23.1428571429"/>
+      </g>
+     </g>
+     <g id="line2d_46">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="368.221875" xlink:href="#mcb0005524f" y="23.1428571429"/>
+      </g>
+     </g>
+     <g id="text_14">
+      <!-- 1.0 -->
+      <g transform="translate(15.28125 25.9022321429)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-31"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+      </g>
+     </g>
+    </g>
+   </g>
+   <g id="patch_5">
+    <path d="
+M33.4219 7.2
+L368.222 7.2" style="fill:none;stroke:#000000;"/>
+   </g>
+   <g id="patch_6">
+    <path d="
+M368.222 230.4
+L368.222 7.2" style="fill:none;stroke:#000000;"/>
+   </g>
+   <g id="patch_7">
+    <path d="
+M33.4219 230.4
+L368.222 230.4" style="fill:none;stroke:#000000;"/>
+   </g>
+   <g id="patch_8">
+    <path d="
+M33.4219 230.4
+L33.4219 7.2" style="fill:none;stroke:#000000;"/>
+   </g>
+   <g id="text_15">
+    <!-- $a_1$ -->
+    <defs>
+     <path d="
+M17.3906 -1.125
+Q11.0781 -1.125 7.4375 3.64062
+Q3.8125 8.40625 3.8125 14.8906
+Q3.8125 21.2969 7.125 28.1719
+Q10.4531 35.0625 16.0938 39.625
+Q21.7344 44.1875 28.2188 44.1875
+Q31.2031 44.1875 33.5469 42.5781
+Q35.8906 40.9688 37.2031 38.1875
+Q38.3281 42.1875 41.6094 42.1875
+Q42.875 42.1875 43.7188 41.4219
+Q44.5781 40.6719 44.5781 39.4062
+Q44.5781 39.1094 44.5469 38.9531
+Q44.5312 38.8125 44.4844 38.625
+L37.5 10.6875
+Q36.8125 7.71875 36.8125 5.8125
+Q36.8125 1.51562 39.7031 1.51562
+Q42.8281 1.51562 44.4531 5.48438
+Q46.0938 9.46875 47.2188 14.7031
+Q47.4062 15.2812 48 15.2812
+L49.2188 15.2812
+Q49.6094 15.2812 49.8438 14.9375
+Q50.0938 14.5938 50.0938 14.3125
+Q48.3438 7.32812 46.2656 3.09375
+Q44.1875 -1.125 39.5 -1.125
+Q36.1406 -1.125 33.5469 0.84375
+Q30.9531 2.82812 30.3281 6.10938
+Q23.875 -1.125 17.3906 -1.125
+M17.4844 1.51562
+Q21.0938 1.51562 24.4844 4.21875
+Q27.875 6.9375 30.3281 10.5938
+Q30.4219 10.6875 30.4219 10.8906
+L35.7969 32.625
+L35.8906 32.9062
+Q35.2969 36.4688 33.3125 39.0312
+Q31.3438 41.6094 27.9844 41.6094
+Q24.6094 41.6094 21.7031 38.8438
+Q18.7969 36.0781 16.7969 32.3281
+Q14.8438 28.3281 13.0625 21.3438
+Q11.2812 14.3594 11.2812 10.5
+Q11.2812 7.03125 12.7656 4.26562
+Q14.2656 1.51562 17.4844 1.51562" id="Cmmi10-61"/>
+     <path d="
+M9.28125 0
+L9.28125 3.51562
+Q21.7812 3.51562 21.7812 6.6875
+L21.7812 59.1875
+Q16.6094 56.6875 8.6875 56.6875
+L8.6875 60.2031
+Q20.9531 60.2031 27.2031 66.6094
+L28.6094 66.6094
+Q28.9531 66.6094 29.2656 66.3281
+Q29.5938 66.0625 29.5938 65.7188
+L29.5938 6.6875
+Q29.5938 3.51562 42.0938 3.51562
+L42.0938 0
+z
+" id="Cmr10-31"/>
+    </defs>
+    <g transform="translate(277.347589286 211.268571429)scale(0.24 -0.24)">
+     <use transform="translate(0.0 0.8125)" xlink:href="#Cmmi10-61"/>
+     <use transform="translate(52.783203125 -24.696875)scale(0.7)" xlink:href="#Cmr10-31"/>
+    </g>
+   </g>
+   <g id="text_16">
+    <!-- $b_1$ -->
+    <defs>
+     <path d="
+M17.2812 -1.125
+Q11.2344 -1.125 7.85938 3.60938
+Q4.5 8.34375 4.5 14.7031
+Q4.5 15.625 4.95312 18.3281
+Q5.42188 21.0469 5.42188 21.6875
+L15.0938 60.5
+Q15.4844 62.2031 15.5781 63.1875
+Q15.5781 64.7969 9.07812 64.7969
+Q8.10938 64.7969 8.10938 66.1094
+Q8.15625 66.3594 8.32812 66.9844
+Q8.5 67.625 8.76562 67.9688
+Q9.03125 68.3125 9.51562 68.3125
+L23 69.3906
+Q24.2188 69.3906 24.2188 68.1094
+L16.7969 38.625
+Q22.4688 44.1875 28.2188 44.1875
+Q32.4688 44.1875 35.5156 41.9375
+Q38.5781 39.7031 40.0938 36.0312
+Q41.6094 32.375 41.6094 28.2188
+Q41.6094 23.3906 39.7188 18.2344
+Q37.8438 13.0938 34.5156 8.67188
+Q31.2031 4.25 26.75 1.5625
+Q22.3125 -1.125 17.2812 -1.125
+M17.4844 1.51562
+Q20.9062 1.51562 23.875 4.375
+Q26.8594 7.23438 28.7188 10.7969
+Q30.7188 14.7969 32.4531 21.6562
+Q34.1875 28.5156 34.1875 32.625
+Q34.1875 36.1875 32.6875 38.8906
+Q31.2031 41.6094 27.9844 41.6094
+Q24.3594 41.6094 21.0625 38.9375
+Q17.7812 36.2812 15.2812 32.625
+L12.5 21.2969
+Q10.8906 14.9844 10.7969 11.1875
+Q10.7969 7.42188 12.4219 4.46875
+Q14.0625 1.51562 17.4844 1.51562" id="Cmmi10-62"/>
+    </defs>
+    <g transform="translate(62.1190178571 88.8274285714)scale(0.24 -0.24)">
+     <use transform="translate(0.0 0.609375)" xlink:href="#Cmmi10-62"/>
+     <use transform="translate(42.919921875 -24.9)scale(0.7)" xlink:href="#Cmr10-31"/>
+    </g>
+   </g>
+   <g id="text_17">
+    <!-- $z_1$ -->
+    <defs>
+     <path d="
+M4.89062 -1.125
+Q4.10938 -1.125 4.10938 -0.203125
+Q4.10938 0.296875 4.29688 0.484375
+Q6.98438 5.125 10.7656 9.34375
+Q14.5469 13.5781 19.3594 17.8906
+Q24.1719 22.2188 29.0312 26.5625
+Q33.8906 30.9062 36.9219 34.2812
+L36.5312 34.2812
+Q34.3281 34.2812 30.0781 35.6875
+Q25.8281 37.1094 23.3906 37.1094
+Q20.75 37.1094 18.25 35.9531
+Q15.7656 34.8125 15.0938 32.4219
+Q14.9375 31.6875 14.3125 31.6875
+L13.0938 31.6875
+Q12.3125 31.6875 12.3125 32.7188
+L12.3125 33.0156
+Q13.0938 35.9375 14.875 38.4688
+Q16.6562 41.0156 19.2656 42.5938
+Q21.875 44.1875 24.7031 44.1875
+Q26.7031 44.1875 28.0156 43.2812
+Q29.3438 42.3906 31.0938 40.4844
+Q32.8594 38.5781 33.9531 37.75
+Q35.0625 36.9219 36.7188 36.9219
+Q38.9219 36.9219 40.6562 38.9219
+Q42.3906 40.9219 44.0938 43.8906
+Q44.3906 44.1875 44.8281 44.1875
+L46 44.1875
+Q46.3438 44.1875 46.5625 43.9375
+Q46.7812 43.7031 46.7812 43.3125
+Q46.7812 42.9688 46.5781 42.6719
+Q43.8906 38.0312 40.2969 34
+Q36.7188 29.9844 30.9219 24.7812
+Q25.1406 19.5781 21.1562 15.9844
+Q17.1875 12.4062 13.7188 8.59375
+Q14.5 8.79688 15.8281 8.79688
+Q18.2656 8.79688 22.4844 7.39062
+Q26.7031 6 29 6
+Q31.5 6 34.0312 7.07812
+Q36.5781 8.15625 38.4219 10.1094
+Q40.2812 12.0625 40.9219 14.5938
+Q41.1562 15.2812 41.7031 15.2812
+L42.9219 15.2812
+Q43.3125 15.2812 43.5469 14.9688
+Q43.7969 14.6562 43.7969 14.3125
+Q43.7969 14.2031 43.7031 14.0156
+Q42.7812 10.2031 40.4844 6.76562
+Q38.1875 3.32812 34.8438 1.09375
+Q31.5 -1.125 27.6875 -1.125
+Q25.7812 -1.125 24.4531 -0.234375
+Q23.1406 0.640625 21.3594 2.5625
+Q19.5781 4.5 18.4531 5.34375
+Q17.3281 6.20312 15.7188 6.20312
+Q10.75 6.20312 6.78125 -0.78125
+Q6.45312 -1.125 6.10938 -1.125
+z
+" id="Cmmi10-7a"/>
+    </defs>
+    <g transform="translate(277.347589286 77.3485714286)scale(0.24 -0.24)">
+     <use transform="translate(0.0 0.8125)" xlink:href="#Cmmi10-7a"/>
+     <use transform="translate(46.484375 -24.696875)scale(0.7)" xlink:href="#Cmr10-31"/>
+    </g>
+   </g>
+   <g id="text_18">
+    <!-- $r$ -->
+    <defs>
+     <path d="
+M7.71875 1.70312
+Q7.71875 2.29688 7.8125 2.59375
+L15.2812 32.4219
+Q16.0156 35.2031 16.0156 37.3125
+Q16.0156 41.6094 13.0938 41.6094
+Q9.96875 41.6094 8.45312 37.8594
+Q6.9375 34.125 5.51562 28.4219
+Q5.51562 28.125 5.21875 27.9531
+Q4.9375 27.7812 4.6875 27.7812
+L3.51562 27.7812
+Q3.17188 27.7812 2.92188 28.1406
+Q2.6875 28.5156 2.6875 28.8125
+Q3.76562 33.1562 4.76562 36.1719
+Q5.76562 39.2031 7.89062 41.6875
+Q10.0156 44.1875 13.1875 44.1875
+Q16.6562 44.1875 19.2656 42.1875
+Q21.875 40.1875 22.5156 36.9219
+Q25.0469 40.2344 28.2969 42.2031
+Q31.5469 44.1875 35.4062 44.1875
+Q38.5781 44.1875 40.9844 42.3281
+Q43.4062 40.4844 43.4062 37.3125
+Q43.4062 34.7656 41.8125 32.875
+Q40.2344 31 37.5938 31
+Q35.9844 31 34.8906 32
+Q33.7969 33.0156 33.7969 34.625
+Q33.7969 36.8125 35.4062 38.5469
+Q37.0156 40.2812 39.1094 40.2812
+Q37.5 41.6094 35.2031 41.6094
+Q30.9062 41.6094 27.7344 38.5469
+Q24.5625 35.5 22.0156 30.8125
+L14.8906 2.20312
+Q14.5469 0.828125 13.3438 -0.140625
+Q12.1562 -1.125 10.6875 -1.125
+Q9.46875 -1.125 8.59375 -0.34375
+Q7.71875 0.4375 7.71875 1.70312" id="Cmmi10-72"/>
+    </defs>
+    <g transform="translate(200.821875 118.8)scale(0.24 -0.24)">
+     <use transform="translate(0.0 0.8125)" xlink:href="#Cmmi10-72"/>
+    </g>
+   </g>
+   <g id="text_19">
+    <!-- $\varphi$ -->
+    <defs>
+     <path d="
+M16.3125 -19
+Q16.3125 -18.6094 16.5 -17.8281
+L22.125 -0.203125
+Q14.6562 1.65625 9.8125 6.6875
+Q4.98438 11.7188 4.98438 19
+Q4.98438 22.6562 6.34375 27.25
+Q7.71875 31.8438 9.85938 35.9688
+Q12.0156 40.0938 14.5 42.8281
+Q15.0938 43.1094 15.1875 43.1094
+L16.4062 43.1094
+Q16.7031 43.1094 16.9375 42.8125
+Q17.1875 42.5312 17.1875 42.1875
+Q17.1875 41.7969 17 41.6094
+Q15.3281 39.7969 13.7344 37.1875
+Q12.1562 34.5781 10.9062 31.6875
+Q9.67188 28.8125 8.84375 25.6406
+Q8.01562 22.4688 8.01562 20.125
+Q8.01562 14.2031 12.7188 10.5625
+Q17.4375 6.9375 23.875 5.71875
+L26.7031 14.7031
+Q28.5625 20.5156 30.3906 25.0781
+Q32.2344 29.6406 34.9844 34
+Q37.75 38.375 41.6562 41.2812
+Q45.5625 44.1875 50.3906 44.1875
+Q54.2031 44.1875 56.7656 42.2812
+Q59.3281 40.375 60.5625 37.2031
+Q61.8125 34.0312 61.8125 30.4219
+Q61.8125 24.4688 59.1719 18.7812
+Q56.5469 13.0938 51.9531 8.5625
+Q47.3594 4.04688 41.5938 1.45312
+Q35.8438 -1.125 29.9844 -1.125
+Q29.2031 -1.07812 28.2969 -1.03125
+Q27.3906 -0.984375 26.8125 -0.984375
+L23.4844 -18.4062
+Q23.1875 -19.875 21.9844 -20.8281
+Q20.7969 -21.7812 19.2812 -21.7812
+Q18.0625 -21.7812 17.1875 -21.0156
+Q16.3125 -20.2656 16.3125 -19
+M27.875 5.17188
+Q29 5.07812 31.1094 5.07812
+Q37.3125 5.07812 43.7188 8.125
+Q50.1406 11.1875 54.3594 16.5
+Q58.5938 21.8281 58.5938 28.0781
+Q58.5938 30.9062 57.4375 33.1562
+Q56.2969 35.4062 54.2188 36.6875
+Q52.1562 37.9844 49.4219 37.9844
+Q41.6562 37.9844 36.4219 30.4688
+Q31.2031 22.9531 29.5938 14.3125
+z
+" id="Cmmi10-27"/>
+    </defs>
+    <g transform="translate(200.821875 155.468571429)scale(0.24 -0.24)">
+     <use transform="translate(0.0 0.8125)" xlink:href="#Cmmi10-27"/>
+    </g>
+   </g>
+  </g>
+ </g>
+ <defs>
+  <clipPath id="pe880596f72">
+   <rect height="223.2" width="334.8" x="33.421875" y="7.2"/>
+  </clipPath>
+ </defs>
+</svg>
diff --git a/docs/figures/complex_numbers_11_0.svg b/docs/figures/complex_numbers_11_0.svg
new file mode 100644
index 0000000000000000000000000000000000000000..fa2c38b0a6d04b4ecdb9a987f0afd4ef7962f42d
--- /dev/null
+++ b/docs/figures/complex_numbers_11_0.svg
@@ -0,0 +1,1275 @@
+<?xml version="1.0" encoding="utf-8" standalone="no"?>
+<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
+  "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
+<!-- Created with matplotlib (https://matplotlib.org/) -->
+<svg height="269.715pt" version="1.1" viewBox="0 0 394.796875 269.715" width="394.796875pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
+ <defs>
+  <style type="text/css">
+*{stroke-linecap:butt;stroke-linejoin:round;}
+  </style>
+ </defs>
+ <g id="figure_1">
+  <g id="patch_1">
+   <path d="M 0 269.715 
+L 394.796875 269.715 
+L 394.796875 0 
+L 0 0 
+z
+" style="fill:#ffffff;"/>
+  </g>
+  <g id="axes_1">
+   <g id="patch_2">
+    <path d="M 44.845313 245.836875 
+L 197.027131 245.836875 
+L 197.027131 28.396875 
+L 44.845313 28.396875 
+z
+" style="fill:#ffffff;"/>
+   </g>
+   <g id="PolyCollection_1">
+    <defs>
+     <path d="M 44.845313 -132.598125 
+L 44.845313 -241.318125 
+L 197.027131 -241.318125 
+L 197.027131 -132.598125 
+L 197.027131 -132.598125 
+L 44.845313 -132.598125 
+z
+" id="mf0c849ee5d" style="stroke:#0000ff;stroke-opacity:0.3;"/>
+    </defs>
+    <g clip-path="url(#p690fb9b53a)">
+     <use style="fill:#0000ff;fill-opacity:0.3;stroke:#0000ff;stroke-opacity:0.3;" x="0" xlink:href="#mf0c849ee5d" y="269.715"/>
+    </g>
+   </g>
+   <g id="PolyCollection_2">
+    <defs>
+     <path d="M 44.845313 -132.598125 
+L 44.845313 -23.878125 
+L 197.027131 -23.878125 
+L 197.027131 -132.598125 
+L 197.027131 -132.598125 
+L 44.845313 -132.598125 
+z
+" id="m363704254c" style="stroke:#ff0000;stroke-opacity:0.3;"/>
+    </defs>
+    <g clip-path="url(#p690fb9b53a)">
+     <use style="fill:#ff0000;fill-opacity:0.3;stroke:#ff0000;stroke-opacity:0.3;" x="0" xlink:href="#m363704254c" y="269.715"/>
+    </g>
+   </g>
+   <g id="matplotlib.axis_1">
+    <g id="xtick_1">
+     <g id="line2d_1">
+      <path clip-path="url(#p690fb9b53a)" d="M 44.845313 245.836875 
+L 44.845313 28.396875 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_2">
+      <defs>
+       <path d="M 0 0 
+L 0 3.5 
+" id="m890bb1bae9" style="stroke:#000000;stroke-opacity:0;stroke-width:0.8;"/>
+      </defs>
+      <g>
+       <use style="fill-opacity:0;stroke:#000000;stroke-opacity:0;stroke-width:0.8;" x="44.845313" xlink:href="#m890bb1bae9" y="245.836875"/>
+      </g>
+     </g>
+     <g id="text_1">
+      <!-- −1.0 -->
+      <defs>
+       <path d="M 10.59375 35.5 
+L 73.1875 35.5 
+L 73.1875 27.203125 
+L 10.59375 27.203125 
+z
+" id="DejaVuSans-8722"/>
+       <path d="M 12.40625 8.296875 
+L 28.515625 8.296875 
+L 28.515625 63.921875 
+L 10.984375 60.40625 
+L 10.984375 69.390625 
+L 28.421875 72.90625 
+L 38.28125 72.90625 
+L 38.28125 8.296875 
+L 54.390625 8.296875 
+L 54.390625 0 
+L 12.40625 0 
+z
+" id="DejaVuSans-49"/>
+       <path d="M 10.6875 12.40625 
+L 21 12.40625 
+L 21 0 
+L 10.6875 0 
+z
+" id="DejaVuSans-46"/>
+       <path d="M 31.78125 66.40625 
+Q 24.171875 66.40625 20.328125 58.90625 
+Q 16.5 51.421875 16.5 36.375 
+Q 16.5 21.390625 20.328125 13.890625 
+Q 24.171875 6.390625 31.78125 6.390625 
+Q 39.453125 6.390625 43.28125 13.890625 
+Q 47.125 21.390625 47.125 36.375 
+Q 47.125 51.421875 43.28125 58.90625 
+Q 39.453125 66.40625 31.78125 66.40625 
+z
+M 31.78125 74.21875 
+Q 44.046875 74.21875 50.515625 64.515625 
+Q 56.984375 54.828125 56.984375 36.375 
+Q 56.984375 17.96875 50.515625 8.265625 
+Q 44.046875 -1.421875 31.78125 -1.421875 
+Q 19.53125 -1.421875 13.0625 8.265625 
+Q 6.59375 17.96875 6.59375 36.375 
+Q 6.59375 54.828125 13.0625 64.515625 
+Q 19.53125 74.21875 31.78125 74.21875 
+z
+" id="DejaVuSans-48"/>
+      </defs>
+      <g style="opacity:0;" transform="translate(32.703906 260.435312)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-8722"/>
+       <use x="83.789062" xlink:href="#DejaVuSans-49"/>
+       <use x="147.412109" xlink:href="#DejaVuSans-46"/>
+       <use x="179.199219" xlink:href="#DejaVuSans-48"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_2">
+     <g id="line2d_3">
+      <path clip-path="url(#p690fb9b53a)" d="M 82.890767 245.836875 
+L 82.890767 28.396875 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_4">
+      <g>
+       <use style="fill-opacity:0;stroke:#000000;stroke-opacity:0;stroke-width:0.8;" x="82.890767" xlink:href="#m890bb1bae9" y="245.836875"/>
+      </g>
+     </g>
+     <g id="text_2">
+      <!-- −0.5 -->
+      <defs>
+       <path d="M 10.796875 72.90625 
+L 49.515625 72.90625 
+L 49.515625 64.59375 
+L 19.828125 64.59375 
+L 19.828125 46.734375 
+Q 21.96875 47.46875 24.109375 47.828125 
+Q 26.265625 48.1875 28.421875 48.1875 
+Q 40.625 48.1875 47.75 41.5 
+Q 54.890625 34.8125 54.890625 23.390625 
+Q 54.890625 11.625 47.5625 5.09375 
+Q 40.234375 -1.421875 26.90625 -1.421875 
+Q 22.3125 -1.421875 17.546875 -0.640625 
+Q 12.796875 0.140625 7.71875 1.703125 
+L 7.71875 11.625 
+Q 12.109375 9.234375 16.796875 8.0625 
+Q 21.484375 6.890625 26.703125 6.890625 
+Q 35.15625 6.890625 40.078125 11.328125 
+Q 45.015625 15.765625 45.015625 23.390625 
+Q 45.015625 31 40.078125 35.4375 
+Q 35.15625 39.890625 26.703125 39.890625 
+Q 22.75 39.890625 18.8125 39.015625 
+Q 14.890625 38.140625 10.796875 36.28125 
+z
+" id="DejaVuSans-53"/>
+      </defs>
+      <g style="opacity:0;" transform="translate(70.749361 260.435312)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-8722"/>
+       <use x="83.789062" xlink:href="#DejaVuSans-48"/>
+       <use x="147.412109" xlink:href="#DejaVuSans-46"/>
+       <use x="179.199219" xlink:href="#DejaVuSans-53"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_3">
+     <g id="line2d_5">
+      <path clip-path="url(#p690fb9b53a)" d="M 120.936222 245.836875 
+L 120.936222 28.396875 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_6">
+      <g>
+       <use style="fill-opacity:0;stroke:#000000;stroke-opacity:0;stroke-width:0.8;" x="120.936222" xlink:href="#m890bb1bae9" y="245.836875"/>
+      </g>
+     </g>
+     <g id="text_3">
+      <!-- 0.0 -->
+      <g style="opacity:0;" transform="translate(112.984659 260.435312)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-48"/>
+       <use x="63.623047" xlink:href="#DejaVuSans-46"/>
+       <use x="95.410156" xlink:href="#DejaVuSans-48"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_4">
+     <g id="line2d_7">
+      <path clip-path="url(#p690fb9b53a)" d="M 158.981676 245.836875 
+L 158.981676 28.396875 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_8">
+      <g>
+       <use style="fill-opacity:0;stroke:#000000;stroke-opacity:0;stroke-width:0.8;" x="158.981676" xlink:href="#m890bb1bae9" y="245.836875"/>
+      </g>
+     </g>
+     <g id="text_4">
+      <!-- 0.5 -->
+      <g style="opacity:0;" transform="translate(151.030114 260.435312)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-48"/>
+       <use x="63.623047" xlink:href="#DejaVuSans-46"/>
+       <use x="95.410156" xlink:href="#DejaVuSans-53"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_5">
+     <g id="line2d_9">
+      <path clip-path="url(#p690fb9b53a)" d="M 197.027131 245.836875 
+L 197.027131 28.396875 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_10">
+      <g>
+       <use style="fill-opacity:0;stroke:#000000;stroke-opacity:0;stroke-width:0.8;" x="197.027131" xlink:href="#m890bb1bae9" y="245.836875"/>
+      </g>
+     </g>
+     <g id="text_5">
+      <!-- 1.0 -->
+      <g style="opacity:0;" transform="translate(189.075568 260.435312)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-49"/>
+       <use x="63.623047" xlink:href="#DejaVuSans-46"/>
+       <use x="95.410156" xlink:href="#DejaVuSans-48"/>
+      </g>
+     </g>
+    </g>
+   </g>
+   <g id="matplotlib.axis_2">
+    <g id="ytick_1">
+     <g id="line2d_11">
+      <path clip-path="url(#p690fb9b53a)" d="M 44.845313 245.836875 
+L 197.027131 245.836875 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_12">
+      <defs>
+       <path d="M 0 0 
+L -3.5 0 
+" id="md8a9fd86c1" style="stroke:#000000;stroke-opacity:0;stroke-width:0.8;"/>
+      </defs>
+      <g>
+       <use style="fill-opacity:0;stroke:#000000;stroke-opacity:0;stroke-width:0.8;" x="44.845313" xlink:href="#md8a9fd86c1" y="245.836875"/>
+      </g>
+     </g>
+     <g id="text_6">
+      <!-- −1.00 -->
+      <g style="opacity:0;" transform="translate(7.2 249.636094)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-8722"/>
+       <use x="83.789062" xlink:href="#DejaVuSans-49"/>
+       <use x="147.412109" xlink:href="#DejaVuSans-46"/>
+       <use x="179.199219" xlink:href="#DejaVuSans-48"/>
+       <use x="242.822266" xlink:href="#DejaVuSans-48"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_2">
+     <g id="line2d_13">
+      <path clip-path="url(#p690fb9b53a)" d="M 44.845313 218.656875 
+L 197.027131 218.656875 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_14">
+      <g>
+       <use style="fill-opacity:0;stroke:#000000;stroke-opacity:0;stroke-width:0.8;" x="44.845313" xlink:href="#md8a9fd86c1" y="218.656875"/>
+      </g>
+     </g>
+     <g id="text_7">
+      <!-- −0.75 -->
+      <defs>
+       <path d="M 8.203125 72.90625 
+L 55.078125 72.90625 
+L 55.078125 68.703125 
+L 28.609375 0 
+L 18.3125 0 
+L 43.21875 64.59375 
+L 8.203125 64.59375 
+z
+" id="DejaVuSans-55"/>
+      </defs>
+      <g style="opacity:0;" transform="translate(7.2 222.456094)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-8722"/>
+       <use x="83.789062" xlink:href="#DejaVuSans-48"/>
+       <use x="147.412109" xlink:href="#DejaVuSans-46"/>
+       <use x="179.199219" xlink:href="#DejaVuSans-55"/>
+       <use x="242.822266" xlink:href="#DejaVuSans-53"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_3">
+     <g id="line2d_15">
+      <path clip-path="url(#p690fb9b53a)" d="M 44.845313 191.476875 
+L 197.027131 191.476875 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_16">
+      <g>
+       <use style="fill-opacity:0;stroke:#000000;stroke-opacity:0;stroke-width:0.8;" x="44.845313" xlink:href="#md8a9fd86c1" y="191.476875"/>
+      </g>
+     </g>
+     <g id="text_8">
+      <!-- −0.50 -->
+      <g style="opacity:0;" transform="translate(7.2 195.276094)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-8722"/>
+       <use x="83.789062" xlink:href="#DejaVuSans-48"/>
+       <use x="147.412109" xlink:href="#DejaVuSans-46"/>
+       <use x="179.199219" xlink:href="#DejaVuSans-53"/>
+       <use x="242.822266" xlink:href="#DejaVuSans-48"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_4">
+     <g id="line2d_17">
+      <path clip-path="url(#p690fb9b53a)" d="M 44.845313 164.296875 
+L 197.027131 164.296875 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_18">
+      <g>
+       <use style="fill-opacity:0;stroke:#000000;stroke-opacity:0;stroke-width:0.8;" x="44.845313" xlink:href="#md8a9fd86c1" y="164.296875"/>
+      </g>
+     </g>
+     <g id="text_9">
+      <!-- −0.25 -->
+      <defs>
+       <path d="M 19.1875 8.296875 
+L 53.609375 8.296875 
+L 53.609375 0 
+L 7.328125 0 
+L 7.328125 8.296875 
+Q 12.9375 14.109375 22.625 23.890625 
+Q 32.328125 33.6875 34.8125 36.53125 
+Q 39.546875 41.84375 41.421875 45.53125 
+Q 43.3125 49.21875 43.3125 52.78125 
+Q 43.3125 58.59375 39.234375 62.25 
+Q 35.15625 65.921875 28.609375 65.921875 
+Q 23.96875 65.921875 18.8125 64.3125 
+Q 13.671875 62.703125 7.8125 59.421875 
+L 7.8125 69.390625 
+Q 13.765625 71.78125 18.9375 73 
+Q 24.125 74.21875 28.421875 74.21875 
+Q 39.75 74.21875 46.484375 68.546875 
+Q 53.21875 62.890625 53.21875 53.421875 
+Q 53.21875 48.921875 51.53125 44.890625 
+Q 49.859375 40.875 45.40625 35.40625 
+Q 44.1875 33.984375 37.640625 27.21875 
+Q 31.109375 20.453125 19.1875 8.296875 
+z
+" id="DejaVuSans-50"/>
+      </defs>
+      <g style="opacity:0;" transform="translate(7.2 168.096094)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-8722"/>
+       <use x="83.789062" xlink:href="#DejaVuSans-48"/>
+       <use x="147.412109" xlink:href="#DejaVuSans-46"/>
+       <use x="179.199219" xlink:href="#DejaVuSans-50"/>
+       <use x="242.822266" xlink:href="#DejaVuSans-53"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_5">
+     <g id="line2d_19">
+      <path clip-path="url(#p690fb9b53a)" d="M 44.845313 137.116875 
+L 197.027131 137.116875 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_20">
+      <g>
+       <use style="fill-opacity:0;stroke:#000000;stroke-opacity:0;stroke-width:0.8;" x="44.845313" xlink:href="#md8a9fd86c1" y="137.116875"/>
+      </g>
+     </g>
+     <g id="text_10">
+      <!-- 0.00 -->
+      <g style="opacity:0;" transform="translate(15.579688 140.916094)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-48"/>
+       <use x="63.623047" xlink:href="#DejaVuSans-46"/>
+       <use x="95.410156" xlink:href="#DejaVuSans-48"/>
+       <use x="159.033203" xlink:href="#DejaVuSans-48"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_6">
+     <g id="line2d_21">
+      <path clip-path="url(#p690fb9b53a)" d="M 44.845313 109.936875 
+L 197.027131 109.936875 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_22">
+      <g>
+       <use style="fill-opacity:0;stroke:#000000;stroke-opacity:0;stroke-width:0.8;" x="44.845313" xlink:href="#md8a9fd86c1" y="109.936875"/>
+      </g>
+     </g>
+     <g id="text_11">
+      <!-- 0.25 -->
+      <g style="opacity:0;" transform="translate(15.579688 113.736094)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-48"/>
+       <use x="63.623047" xlink:href="#DejaVuSans-46"/>
+       <use x="95.410156" xlink:href="#DejaVuSans-50"/>
+       <use x="159.033203" xlink:href="#DejaVuSans-53"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_7">
+     <g id="line2d_23">
+      <path clip-path="url(#p690fb9b53a)" d="M 44.845313 82.756875 
+L 197.027131 82.756875 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_24">
+      <g>
+       <use style="fill-opacity:0;stroke:#000000;stroke-opacity:0;stroke-width:0.8;" x="44.845313" xlink:href="#md8a9fd86c1" y="82.756875"/>
+      </g>
+     </g>
+     <g id="text_12">
+      <!-- 0.50 -->
+      <g style="opacity:0;" transform="translate(15.579688 86.556094)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-48"/>
+       <use x="63.623047" xlink:href="#DejaVuSans-46"/>
+       <use x="95.410156" xlink:href="#DejaVuSans-53"/>
+       <use x="159.033203" xlink:href="#DejaVuSans-48"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_8">
+     <g id="line2d_25">
+      <path clip-path="url(#p690fb9b53a)" d="M 44.845313 55.576875 
+L 197.027131 55.576875 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_26">
+      <g>
+       <use style="fill-opacity:0;stroke:#000000;stroke-opacity:0;stroke-width:0.8;" x="44.845313" xlink:href="#md8a9fd86c1" y="55.576875"/>
+      </g>
+     </g>
+     <g id="text_13">
+      <!-- 0.75 -->
+      <g style="opacity:0;" transform="translate(15.579688 59.376094)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-48"/>
+       <use x="63.623047" xlink:href="#DejaVuSans-46"/>
+       <use x="95.410156" xlink:href="#DejaVuSans-55"/>
+       <use x="159.033203" xlink:href="#DejaVuSans-53"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_9">
+     <g id="line2d_27">
+      <path clip-path="url(#p690fb9b53a)" d="M 44.845313 28.396875 
+L 197.027131 28.396875 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_28">
+      <g>
+       <use style="fill-opacity:0;stroke:#000000;stroke-opacity:0;stroke-width:0.8;" x="44.845313" xlink:href="#md8a9fd86c1" y="28.396875"/>
+      </g>
+     </g>
+     <g id="text_14">
+      <!-- 1.00 -->
+      <g style="opacity:0;" transform="translate(15.579688 32.196094)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-49"/>
+       <use x="63.623047" xlink:href="#DejaVuSans-46"/>
+       <use x="95.410156" xlink:href="#DejaVuSans-48"/>
+       <use x="159.033203" xlink:href="#DejaVuSans-48"/>
+      </g>
+     </g>
+    </g>
+   </g>
+   <g id="line2d_29">
+    <path clip-path="url(#p690fb9b53a)" d="M 44.845313 137.116875 
+L 197.027131 137.116875 
+" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:1.5;"/>
+   </g>
+   <g id="line2d_30">
+    <path clip-path="url(#p690fb9b53a)" d="M 120.936222 245.836875 
+L 120.936222 28.396875 
+" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:1.5;"/>
+   </g>
+   <g id="patch_3">
+    <path d="M 44.845313 245.836875 
+L 44.845313 28.396875 
+" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/>
+   </g>
+   <g id="patch_4">
+    <path d="M 197.027131 245.836875 
+L 197.027131 28.396875 
+" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/>
+   </g>
+   <g id="patch_5">
+    <path d="M 44.845313 245.836875 
+L 197.027131 245.836875 
+" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/>
+   </g>
+   <g id="patch_6">
+    <path d="M 44.845313 28.396875 
+L 197.027131 28.396875 
+" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/>
+   </g>
+   <g id="text_15">
+    <!-- $ \varphi &gt; 0$ -->
+    <defs>
+     <path d="M 40.484375 47.40625 
+Q 37.3125 47.40625 37.3125 40.328125 
+L 37.3125 6.84375 
+Q 41.9375 6.84375 46.578125 11.921875 
+Q 50.734375 16.453125 50.734375 27.34375 
+Q 50.734375 37.5 46.53125 42.96875 
+Q 43.109375 47.40625 40.484375 47.40625 
+z
+M 40.484375 55.078125 
+Q 47.3125 55.078125 53.515625 48.640625 
+Q 60.203125 41.75 60.203125 27.34375 
+Q 60.203125 14.109375 53.515625 6.25 
+Q 47.21875 -1.171875 37.3125 -1.171875 
+L 37.3125 -20.796875 
+L 28.375 -20.796875 
+L 28.375 -1.21875 
+Q 18.65625 -1.21875 12.109375 6.25 
+Q 5.46875 13.875 5.46875 27.296875 
+Q 5.46875 41.265625 12.109375 48.390625 
+Q 17.09375 53.71875 25.203125 55.078125 
+L 25.203125 47.125 
+Q 21.96875 46 19.140625 42.1875 
+Q 14.9375 36.578125 14.9375 27.296875 
+Q 14.9375 17.4375 19.140625 11.8125 
+Q 22.90625 6.78125 28.375 6.78125 
+L 28.375 40.328125 
+Q 28.375 55.078125 40.484375 55.078125 
+z
+" id="DejaVuSans-966"/>
+     <path d="M 10.59375 49.21875 
+L 10.59375 58.109375 
+L 73.1875 35.40625 
+L 73.1875 27.296875 
+L 10.59375 4.59375 
+L 10.59375 13.484375 
+L 60.890625 31.296875 
+z
+" id="DejaVuSans-62"/>
+    </defs>
+    <g style="fill:#0000ff;" transform="translate(94.304403 115.372875)scale(0.2 -0.2)">
+     <use transform="translate(0 0.78125)" xlink:href="#DejaVuSans-966"/>
+     <use transform="translate(85.449219 0.78125)" xlink:href="#DejaVuSans-62"/>
+     <use transform="translate(188.720703 0.78125)" xlink:href="#DejaVuSans-48"/>
+    </g>
+   </g>
+   <g id="text_16">
+    <!-- $\varphi &lt; 0$ -->
+    <defs>
+     <path d="M 73.1875 49.21875 
+L 22.796875 31.296875 
+L 73.1875 13.484375 
+L 73.1875 4.59375 
+L 10.59375 27.296875 
+L 10.59375 35.40625 
+L 73.1875 58.109375 
+z
+" id="DejaVuSans-60"/>
+    </defs>
+    <g style="fill:#ff0000;" transform="translate(94.304403 158.860875)scale(0.2 -0.2)">
+     <use transform="translate(0 0.78125)" xlink:href="#DejaVuSans-966"/>
+     <use transform="translate(85.449219 0.78125)" xlink:href="#DejaVuSans-60"/>
+     <use transform="translate(188.720703 0.78125)" xlink:href="#DejaVuSans-48"/>
+    </g>
+   </g>
+   <g id="text_17">
+    <!-- One choice: -->
+    <defs>
+     <path d="M 39.40625 66.21875 
+Q 28.65625 66.21875 22.328125 58.203125 
+Q 16.015625 50.203125 16.015625 36.375 
+Q 16.015625 22.609375 22.328125 14.59375 
+Q 28.65625 6.59375 39.40625 6.59375 
+Q 50.140625 6.59375 56.421875 14.59375 
+Q 62.703125 22.609375 62.703125 36.375 
+Q 62.703125 50.203125 56.421875 58.203125 
+Q 50.140625 66.21875 39.40625 66.21875 
+z
+M 39.40625 74.21875 
+Q 54.734375 74.21875 63.90625 63.9375 
+Q 73.09375 53.65625 73.09375 36.375 
+Q 73.09375 19.140625 63.90625 8.859375 
+Q 54.734375 -1.421875 39.40625 -1.421875 
+Q 24.03125 -1.421875 14.8125 8.828125 
+Q 5.609375 19.09375 5.609375 36.375 
+Q 5.609375 53.65625 14.8125 63.9375 
+Q 24.03125 74.21875 39.40625 74.21875 
+z
+" id="DejaVuSans-79"/>
+     <path d="M 54.890625 33.015625 
+L 54.890625 0 
+L 45.90625 0 
+L 45.90625 32.71875 
+Q 45.90625 40.484375 42.875 44.328125 
+Q 39.84375 48.1875 33.796875 48.1875 
+Q 26.515625 48.1875 22.3125 43.546875 
+Q 18.109375 38.921875 18.109375 30.90625 
+L 18.109375 0 
+L 9.078125 0 
+L 9.078125 54.6875 
+L 18.109375 54.6875 
+L 18.109375 46.1875 
+Q 21.34375 51.125 25.703125 53.5625 
+Q 30.078125 56 35.796875 56 
+Q 45.21875 56 50.046875 50.171875 
+Q 54.890625 44.34375 54.890625 33.015625 
+z
+" id="DejaVuSans-110"/>
+     <path d="M 56.203125 29.59375 
+L 56.203125 25.203125 
+L 14.890625 25.203125 
+Q 15.484375 15.921875 20.484375 11.0625 
+Q 25.484375 6.203125 34.421875 6.203125 
+Q 39.59375 6.203125 44.453125 7.46875 
+Q 49.3125 8.734375 54.109375 11.28125 
+L 54.109375 2.78125 
+Q 49.265625 0.734375 44.1875 -0.34375 
+Q 39.109375 -1.421875 33.890625 -1.421875 
+Q 20.796875 -1.421875 13.15625 6.1875 
+Q 5.515625 13.8125 5.515625 26.8125 
+Q 5.515625 40.234375 12.765625 48.109375 
+Q 20.015625 56 32.328125 56 
+Q 43.359375 56 49.78125 48.890625 
+Q 56.203125 41.796875 56.203125 29.59375 
+z
+M 47.21875 32.234375 
+Q 47.125 39.59375 43.09375 43.984375 
+Q 39.0625 48.390625 32.421875 48.390625 
+Q 24.90625 48.390625 20.390625 44.140625 
+Q 15.875 39.890625 15.1875 32.171875 
+z
+" id="DejaVuSans-101"/>
+     <path id="DejaVuSans-32"/>
+     <path d="M 48.78125 52.59375 
+L 48.78125 44.1875 
+Q 44.96875 46.296875 41.140625 47.34375 
+Q 37.3125 48.390625 33.40625 48.390625 
+Q 24.65625 48.390625 19.8125 42.84375 
+Q 14.984375 37.3125 14.984375 27.296875 
+Q 14.984375 17.28125 19.8125 11.734375 
+Q 24.65625 6.203125 33.40625 6.203125 
+Q 37.3125 6.203125 41.140625 7.25 
+Q 44.96875 8.296875 48.78125 10.40625 
+L 48.78125 2.09375 
+Q 45.015625 0.34375 40.984375 -0.53125 
+Q 36.96875 -1.421875 32.421875 -1.421875 
+Q 20.0625 -1.421875 12.78125 6.34375 
+Q 5.515625 14.109375 5.515625 27.296875 
+Q 5.515625 40.671875 12.859375 48.328125 
+Q 20.21875 56 33.015625 56 
+Q 37.15625 56 41.109375 55.140625 
+Q 45.0625 54.296875 48.78125 52.59375 
+z
+" id="DejaVuSans-99"/>
+     <path d="M 54.890625 33.015625 
+L 54.890625 0 
+L 45.90625 0 
+L 45.90625 32.71875 
+Q 45.90625 40.484375 42.875 44.328125 
+Q 39.84375 48.1875 33.796875 48.1875 
+Q 26.515625 48.1875 22.3125 43.546875 
+Q 18.109375 38.921875 18.109375 30.90625 
+L 18.109375 0 
+L 9.078125 0 
+L 9.078125 75.984375 
+L 18.109375 75.984375 
+L 18.109375 46.1875 
+Q 21.34375 51.125 25.703125 53.5625 
+Q 30.078125 56 35.796875 56 
+Q 45.21875 56 50.046875 50.171875 
+Q 54.890625 44.34375 54.890625 33.015625 
+z
+" id="DejaVuSans-104"/>
+     <path d="M 30.609375 48.390625 
+Q 23.390625 48.390625 19.1875 42.75 
+Q 14.984375 37.109375 14.984375 27.296875 
+Q 14.984375 17.484375 19.15625 11.84375 
+Q 23.34375 6.203125 30.609375 6.203125 
+Q 37.796875 6.203125 41.984375 11.859375 
+Q 46.1875 17.53125 46.1875 27.296875 
+Q 46.1875 37.015625 41.984375 42.703125 
+Q 37.796875 48.390625 30.609375 48.390625 
+z
+M 30.609375 56 
+Q 42.328125 56 49.015625 48.375 
+Q 55.71875 40.765625 55.71875 27.296875 
+Q 55.71875 13.875 49.015625 6.21875 
+Q 42.328125 -1.421875 30.609375 -1.421875 
+Q 18.84375 -1.421875 12.171875 6.21875 
+Q 5.515625 13.875 5.515625 27.296875 
+Q 5.515625 40.765625 12.171875 48.375 
+Q 18.84375 56 30.609375 56 
+z
+" id="DejaVuSans-111"/>
+     <path d="M 9.421875 54.6875 
+L 18.40625 54.6875 
+L 18.40625 0 
+L 9.421875 0 
+z
+M 9.421875 75.984375 
+L 18.40625 75.984375 
+L 18.40625 64.59375 
+L 9.421875 64.59375 
+z
+" id="DejaVuSans-105"/>
+     <path d="M 11.71875 12.40625 
+L 22.015625 12.40625 
+L 22.015625 0 
+L 11.71875 0 
+z
+M 11.71875 51.703125 
+L 22.015625 51.703125 
+L 22.015625 39.3125 
+L 11.71875 39.3125 
+z
+" id="DejaVuSans-58"/>
+    </defs>
+    <g transform="translate(61.642472 22.396875)scale(0.2 -0.2)">
+     <use xlink:href="#DejaVuSans-79"/>
+     <use x="78.710938" xlink:href="#DejaVuSans-110"/>
+     <use x="142.089844" xlink:href="#DejaVuSans-101"/>
+     <use x="203.613281" xlink:href="#DejaVuSans-32"/>
+     <use x="235.400391" xlink:href="#DejaVuSans-99"/>
+     <use x="290.380859" xlink:href="#DejaVuSans-104"/>
+     <use x="353.759766" xlink:href="#DejaVuSans-111"/>
+     <use x="414.941406" xlink:href="#DejaVuSans-105"/>
+     <use x="442.724609" xlink:href="#DejaVuSans-99"/>
+     <use x="497.705078" xlink:href="#DejaVuSans-101"/>
+     <use x="559.228516" xlink:href="#DejaVuSans-58"/>
+    </g>
+   </g>
+  </g>
+  <g id="axes_2">
+   <g id="patch_7">
+    <path d="M 227.463494 245.836875 
+L 379.645312 245.836875 
+L 379.645312 28.396875 
+L 227.463494 28.396875 
+z
+" style="fill:#ffffff;"/>
+   </g>
+   <g id="PolyCollection_3">
+    <defs>
+     <path d="M 227.463494 -132.598125 
+L 227.463494 -241.318125 
+L 379.645312 -241.318125 
+L 379.645312 -132.598125 
+L 379.645312 -132.598125 
+L 227.463494 -132.598125 
+z
+" id="mec74947141" style="stroke:#0000ff;stroke-opacity:0.3;"/>
+    </defs>
+    <g clip-path="url(#pa42bb7563e)">
+     <use style="fill:#0000ff;fill-opacity:0.3;stroke:#0000ff;stroke-opacity:0.3;" x="0" xlink:href="#mec74947141" y="269.715"/>
+    </g>
+   </g>
+   <g id="PolyCollection_4">
+    <defs>
+     <path d="M 227.463494 -132.598125 
+L 227.463494 -23.878125 
+L 303.554403 -23.878125 
+L 303.554403 -132.598125 
+L 303.554403 -132.598125 
+L 227.463494 -132.598125 
+z
+" id="maeb6a5f78f" style="stroke:#0000ff;stroke-opacity:0.3;"/>
+    </defs>
+    <g clip-path="url(#pa42bb7563e)">
+     <use style="fill:#0000ff;fill-opacity:0.3;stroke:#0000ff;stroke-opacity:0.3;" x="0" xlink:href="#maeb6a5f78f" y="269.715"/>
+    </g>
+   </g>
+   <g id="PolyCollection_5">
+    <defs>
+     <path d="M 303.554403 -132.598125 
+L 303.554403 -23.878125 
+L 379.645312 -23.878125 
+L 379.645312 -132.598125 
+L 379.645312 -132.598125 
+L 303.554403 -132.598125 
+z
+" id="m7e53357706" style="stroke:#ff0000;stroke-opacity:0.3;"/>
+    </defs>
+    <g clip-path="url(#pa42bb7563e)">
+     <use style="fill:#ff0000;fill-opacity:0.3;stroke:#ff0000;stroke-opacity:0.3;" x="0" xlink:href="#m7e53357706" y="269.715"/>
+    </g>
+   </g>
+   <g id="matplotlib.axis_3">
+    <g id="xtick_6">
+     <g id="line2d_31">
+      <path clip-path="url(#pa42bb7563e)" d="M 227.463494 245.836875 
+L 227.463494 28.396875 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_32">
+      <g>
+       <use style="fill-opacity:0;stroke:#000000;stroke-opacity:0;stroke-width:0.8;" x="227.463494" xlink:href="#m890bb1bae9" y="245.836875"/>
+      </g>
+     </g>
+     <g id="text_18">
+      <!-- −1.0 -->
+      <g style="opacity:0;" transform="translate(215.322088 260.435312)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-8722"/>
+       <use x="83.789062" xlink:href="#DejaVuSans-49"/>
+       <use x="147.412109" xlink:href="#DejaVuSans-46"/>
+       <use x="179.199219" xlink:href="#DejaVuSans-48"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_7">
+     <g id="line2d_33">
+      <path clip-path="url(#pa42bb7563e)" d="M 265.508949 245.836875 
+L 265.508949 28.396875 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_34">
+      <g>
+       <use style="fill-opacity:0;stroke:#000000;stroke-opacity:0;stroke-width:0.8;" x="265.508949" xlink:href="#m890bb1bae9" y="245.836875"/>
+      </g>
+     </g>
+     <g id="text_19">
+      <!-- −0.5 -->
+      <g style="opacity:0;" transform="translate(253.367543 260.435312)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-8722"/>
+       <use x="83.789062" xlink:href="#DejaVuSans-48"/>
+       <use x="147.412109" xlink:href="#DejaVuSans-46"/>
+       <use x="179.199219" xlink:href="#DejaVuSans-53"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_8">
+     <g id="line2d_35">
+      <path clip-path="url(#pa42bb7563e)" d="M 303.554403 245.836875 
+L 303.554403 28.396875 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_36">
+      <g>
+       <use style="fill-opacity:0;stroke:#000000;stroke-opacity:0;stroke-width:0.8;" x="303.554403" xlink:href="#m890bb1bae9" y="245.836875"/>
+      </g>
+     </g>
+     <g id="text_20">
+      <!-- 0.0 -->
+      <g style="opacity:0;" transform="translate(295.602841 260.435312)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-48"/>
+       <use x="63.623047" xlink:href="#DejaVuSans-46"/>
+       <use x="95.410156" xlink:href="#DejaVuSans-48"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_9">
+     <g id="line2d_37">
+      <path clip-path="url(#pa42bb7563e)" d="M 341.599858 245.836875 
+L 341.599858 28.396875 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_38">
+      <g>
+       <use style="fill-opacity:0;stroke:#000000;stroke-opacity:0;stroke-width:0.8;" x="341.599858" xlink:href="#m890bb1bae9" y="245.836875"/>
+      </g>
+     </g>
+     <g id="text_21">
+      <!-- 0.5 -->
+      <g style="opacity:0;" transform="translate(333.648295 260.435312)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-48"/>
+       <use x="63.623047" xlink:href="#DejaVuSans-46"/>
+       <use x="95.410156" xlink:href="#DejaVuSans-53"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_10">
+     <g id="line2d_39">
+      <path clip-path="url(#pa42bb7563e)" d="M 379.645312 245.836875 
+L 379.645312 28.396875 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_40">
+      <g>
+       <use style="fill-opacity:0;stroke:#000000;stroke-opacity:0;stroke-width:0.8;" x="379.645312" xlink:href="#m890bb1bae9" y="245.836875"/>
+      </g>
+     </g>
+     <g id="text_22">
+      <!-- 1.0 -->
+      <g style="opacity:0;" transform="translate(371.69375 260.435312)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-49"/>
+       <use x="63.623047" xlink:href="#DejaVuSans-46"/>
+       <use x="95.410156" xlink:href="#DejaVuSans-48"/>
+      </g>
+     </g>
+    </g>
+   </g>
+   <g id="matplotlib.axis_4">
+    <g id="ytick_10">
+     <g id="line2d_41">
+      <path clip-path="url(#pa42bb7563e)" d="M 227.463494 245.836875 
+L 379.645312 245.836875 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_42">
+      <g>
+       <use style="fill-opacity:0;stroke:#000000;stroke-opacity:0;stroke-width:0.8;" x="227.463494" xlink:href="#md8a9fd86c1" y="245.836875"/>
+      </g>
+     </g>
+     <g id="text_23">
+      <!-- −1.00 -->
+      <g style="opacity:0;" transform="translate(189.818182 249.636094)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-8722"/>
+       <use x="83.789062" xlink:href="#DejaVuSans-49"/>
+       <use x="147.412109" xlink:href="#DejaVuSans-46"/>
+       <use x="179.199219" xlink:href="#DejaVuSans-48"/>
+       <use x="242.822266" xlink:href="#DejaVuSans-48"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_11">
+     <g id="line2d_43">
+      <path clip-path="url(#pa42bb7563e)" d="M 227.463494 218.656875 
+L 379.645312 218.656875 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_44">
+      <g>
+       <use style="fill-opacity:0;stroke:#000000;stroke-opacity:0;stroke-width:0.8;" x="227.463494" xlink:href="#md8a9fd86c1" y="218.656875"/>
+      </g>
+     </g>
+     <g id="text_24">
+      <!-- −0.75 -->
+      <g style="opacity:0;" transform="translate(189.818182 222.456094)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-8722"/>
+       <use x="83.789062" xlink:href="#DejaVuSans-48"/>
+       <use x="147.412109" xlink:href="#DejaVuSans-46"/>
+       <use x="179.199219" xlink:href="#DejaVuSans-55"/>
+       <use x="242.822266" xlink:href="#DejaVuSans-53"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_12">
+     <g id="line2d_45">
+      <path clip-path="url(#pa42bb7563e)" d="M 227.463494 191.476875 
+L 379.645312 191.476875 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_46">
+      <g>
+       <use style="fill-opacity:0;stroke:#000000;stroke-opacity:0;stroke-width:0.8;" x="227.463494" xlink:href="#md8a9fd86c1" y="191.476875"/>
+      </g>
+     </g>
+     <g id="text_25">
+      <!-- −0.50 -->
+      <g style="opacity:0;" transform="translate(189.818182 195.276094)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-8722"/>
+       <use x="83.789062" xlink:href="#DejaVuSans-48"/>
+       <use x="147.412109" xlink:href="#DejaVuSans-46"/>
+       <use x="179.199219" xlink:href="#DejaVuSans-53"/>
+       <use x="242.822266" xlink:href="#DejaVuSans-48"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_13">
+     <g id="line2d_47">
+      <path clip-path="url(#pa42bb7563e)" d="M 227.463494 164.296875 
+L 379.645312 164.296875 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_48">
+      <g>
+       <use style="fill-opacity:0;stroke:#000000;stroke-opacity:0;stroke-width:0.8;" x="227.463494" xlink:href="#md8a9fd86c1" y="164.296875"/>
+      </g>
+     </g>
+     <g id="text_26">
+      <!-- −0.25 -->
+      <g style="opacity:0;" transform="translate(189.818182 168.096094)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-8722"/>
+       <use x="83.789062" xlink:href="#DejaVuSans-48"/>
+       <use x="147.412109" xlink:href="#DejaVuSans-46"/>
+       <use x="179.199219" xlink:href="#DejaVuSans-50"/>
+       <use x="242.822266" xlink:href="#DejaVuSans-53"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_14">
+     <g id="line2d_49">
+      <path clip-path="url(#pa42bb7563e)" d="M 227.463494 137.116875 
+L 379.645312 137.116875 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_50">
+      <g>
+       <use style="fill-opacity:0;stroke:#000000;stroke-opacity:0;stroke-width:0.8;" x="227.463494" xlink:href="#md8a9fd86c1" y="137.116875"/>
+      </g>
+     </g>
+     <g id="text_27">
+      <!-- 0.00 -->
+      <g style="opacity:0;" transform="translate(198.197869 140.916094)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-48"/>
+       <use x="63.623047" xlink:href="#DejaVuSans-46"/>
+       <use x="95.410156" xlink:href="#DejaVuSans-48"/>
+       <use x="159.033203" xlink:href="#DejaVuSans-48"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_15">
+     <g id="line2d_51">
+      <path clip-path="url(#pa42bb7563e)" d="M 227.463494 109.936875 
+L 379.645312 109.936875 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_52">
+      <g>
+       <use style="fill-opacity:0;stroke:#000000;stroke-opacity:0;stroke-width:0.8;" x="227.463494" xlink:href="#md8a9fd86c1" y="109.936875"/>
+      </g>
+     </g>
+     <g id="text_28">
+      <!-- 0.25 -->
+      <g style="opacity:0;" transform="translate(198.197869 113.736094)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-48"/>
+       <use x="63.623047" xlink:href="#DejaVuSans-46"/>
+       <use x="95.410156" xlink:href="#DejaVuSans-50"/>
+       <use x="159.033203" xlink:href="#DejaVuSans-53"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_16">
+     <g id="line2d_53">
+      <path clip-path="url(#pa42bb7563e)" d="M 227.463494 82.756875 
+L 379.645312 82.756875 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_54">
+      <g>
+       <use style="fill-opacity:0;stroke:#000000;stroke-opacity:0;stroke-width:0.8;" x="227.463494" xlink:href="#md8a9fd86c1" y="82.756875"/>
+      </g>
+     </g>
+     <g id="text_29">
+      <!-- 0.50 -->
+      <g style="opacity:0;" transform="translate(198.197869 86.556094)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-48"/>
+       <use x="63.623047" xlink:href="#DejaVuSans-46"/>
+       <use x="95.410156" xlink:href="#DejaVuSans-53"/>
+       <use x="159.033203" xlink:href="#DejaVuSans-48"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_17">
+     <g id="line2d_55">
+      <path clip-path="url(#pa42bb7563e)" d="M 227.463494 55.576875 
+L 379.645312 55.576875 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_56">
+      <g>
+       <use style="fill-opacity:0;stroke:#000000;stroke-opacity:0;stroke-width:0.8;" x="227.463494" xlink:href="#md8a9fd86c1" y="55.576875"/>
+      </g>
+     </g>
+     <g id="text_30">
+      <!-- 0.75 -->
+      <g style="opacity:0;" transform="translate(198.197869 59.376094)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-48"/>
+       <use x="63.623047" xlink:href="#DejaVuSans-46"/>
+       <use x="95.410156" xlink:href="#DejaVuSans-55"/>
+       <use x="159.033203" xlink:href="#DejaVuSans-53"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_18">
+     <g id="line2d_57">
+      <path clip-path="url(#pa42bb7563e)" d="M 227.463494 28.396875 
+L 379.645312 28.396875 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_58">
+      <g>
+       <use style="fill-opacity:0;stroke:#000000;stroke-opacity:0;stroke-width:0.8;" x="227.463494" xlink:href="#md8a9fd86c1" y="28.396875"/>
+      </g>
+     </g>
+     <g id="text_31">
+      <!-- 1.00 -->
+      <g style="opacity:0;" transform="translate(198.197869 32.196094)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-49"/>
+       <use x="63.623047" xlink:href="#DejaVuSans-46"/>
+       <use x="95.410156" xlink:href="#DejaVuSans-48"/>
+       <use x="159.033203" xlink:href="#DejaVuSans-48"/>
+      </g>
+     </g>
+    </g>
+   </g>
+   <g id="line2d_59">
+    <path clip-path="url(#pa42bb7563e)" d="M 227.463494 137.116875 
+L 379.645312 137.116875 
+" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:1.5;"/>
+   </g>
+   <g id="line2d_60">
+    <path clip-path="url(#pa42bb7563e)" d="M 303.554403 245.836875 
+L 303.554403 28.396875 
+" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:1.5;"/>
+   </g>
+   <g id="patch_8">
+    <path d="M 227.463494 245.836875 
+L 227.463494 28.396875 
+" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/>
+   </g>
+   <g id="patch_9">
+    <path d="M 379.645312 245.836875 
+L 379.645312 28.396875 
+" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/>
+   </g>
+   <g id="patch_10">
+    <path d="M 227.463494 245.836875 
+L 379.645312 245.836875 
+" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/>
+   </g>
+   <g id="patch_11">
+    <path d="M 227.463494 28.396875 
+L 379.645312 28.396875 
+" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/>
+   </g>
+   <g id="text_32">
+    <!-- $ \varphi &gt; 0$ -->
+    <g style="fill:#0000ff;" transform="translate(242.681676 115.372875)scale(0.2 -0.2)">
+     <use transform="translate(0 0.78125)" xlink:href="#DejaVuSans-966"/>
+     <use transform="translate(85.449219 0.78125)" xlink:href="#DejaVuSans-62"/>
+     <use transform="translate(188.720703 0.78125)" xlink:href="#DejaVuSans-48"/>
+    </g>
+   </g>
+   <g id="text_33">
+    <!-- $\varphi &lt; 0$ -->
+    <g style="fill:#ff0000;" transform="translate(311.163494 158.860875)scale(0.2 -0.2)">
+     <use transform="translate(0 0.78125)" xlink:href="#DejaVuSans-966"/>
+     <use transform="translate(85.449219 0.78125)" xlink:href="#DejaVuSans-60"/>
+     <use transform="translate(188.720703 0.78125)" xlink:href="#DejaVuSans-48"/>
+    </g>
+   </g>
+   <g id="text_34">
+    <!-- Also possible: -->
+    <defs>
+     <path d="M 34.1875 63.1875 
+L 20.796875 26.90625 
+L 47.609375 26.90625 
+z
+M 28.609375 72.90625 
+L 39.796875 72.90625 
+L 67.578125 0 
+L 57.328125 0 
+L 50.6875 18.703125 
+L 17.828125 18.703125 
+L 11.1875 0 
+L 0.78125 0 
+z
+" id="DejaVuSans-65"/>
+     <path d="M 9.421875 75.984375 
+L 18.40625 75.984375 
+L 18.40625 0 
+L 9.421875 0 
+z
+" id="DejaVuSans-108"/>
+     <path d="M 44.28125 53.078125 
+L 44.28125 44.578125 
+Q 40.484375 46.53125 36.375 47.5 
+Q 32.28125 48.484375 27.875 48.484375 
+Q 21.1875 48.484375 17.84375 46.4375 
+Q 14.5 44.390625 14.5 40.28125 
+Q 14.5 37.15625 16.890625 35.375 
+Q 19.28125 33.59375 26.515625 31.984375 
+L 29.59375 31.296875 
+Q 39.15625 29.25 43.1875 25.515625 
+Q 47.21875 21.78125 47.21875 15.09375 
+Q 47.21875 7.46875 41.1875 3.015625 
+Q 35.15625 -1.421875 24.609375 -1.421875 
+Q 20.21875 -1.421875 15.453125 -0.5625 
+Q 10.6875 0.296875 5.421875 2 
+L 5.421875 11.28125 
+Q 10.40625 8.6875 15.234375 7.390625 
+Q 20.0625 6.109375 24.8125 6.109375 
+Q 31.15625 6.109375 34.5625 8.28125 
+Q 37.984375 10.453125 37.984375 14.40625 
+Q 37.984375 18.0625 35.515625 20.015625 
+Q 33.0625 21.96875 24.703125 23.78125 
+L 21.578125 24.515625 
+Q 13.234375 26.265625 9.515625 29.90625 
+Q 5.8125 33.546875 5.8125 39.890625 
+Q 5.8125 47.609375 11.28125 51.796875 
+Q 16.75 56 26.8125 56 
+Q 31.78125 56 36.171875 55.265625 
+Q 40.578125 54.546875 44.28125 53.078125 
+z
+" id="DejaVuSans-115"/>
+     <path d="M 18.109375 8.203125 
+L 18.109375 -20.796875 
+L 9.078125 -20.796875 
+L 9.078125 54.6875 
+L 18.109375 54.6875 
+L 18.109375 46.390625 
+Q 20.953125 51.265625 25.265625 53.625 
+Q 29.59375 56 35.59375 56 
+Q 45.5625 56 51.78125 48.09375 
+Q 58.015625 40.1875 58.015625 27.296875 
+Q 58.015625 14.40625 51.78125 6.484375 
+Q 45.5625 -1.421875 35.59375 -1.421875 
+Q 29.59375 -1.421875 25.265625 0.953125 
+Q 20.953125 3.328125 18.109375 8.203125 
+z
+M 48.6875 27.296875 
+Q 48.6875 37.203125 44.609375 42.84375 
+Q 40.53125 48.484375 33.40625 48.484375 
+Q 26.265625 48.484375 22.1875 42.84375 
+Q 18.109375 37.203125 18.109375 27.296875 
+Q 18.109375 17.390625 22.1875 11.75 
+Q 26.265625 6.109375 33.40625 6.109375 
+Q 40.53125 6.109375 44.609375 11.75 
+Q 48.6875 17.390625 48.6875 27.296875 
+z
+" id="DejaVuSans-112"/>
+     <path d="M 48.6875 27.296875 
+Q 48.6875 37.203125 44.609375 42.84375 
+Q 40.53125 48.484375 33.40625 48.484375 
+Q 26.265625 48.484375 22.1875 42.84375 
+Q 18.109375 37.203125 18.109375 27.296875 
+Q 18.109375 17.390625 22.1875 11.75 
+Q 26.265625 6.109375 33.40625 6.109375 
+Q 40.53125 6.109375 44.609375 11.75 
+Q 48.6875 17.390625 48.6875 27.296875 
+z
+M 18.109375 46.390625 
+Q 20.953125 51.265625 25.265625 53.625 
+Q 29.59375 56 35.59375 56 
+Q 45.5625 56 51.78125 48.09375 
+Q 58.015625 40.1875 58.015625 27.296875 
+Q 58.015625 14.40625 51.78125 6.484375 
+Q 45.5625 -1.421875 35.59375 -1.421875 
+Q 29.59375 -1.421875 25.265625 0.953125 
+Q 20.953125 3.328125 18.109375 8.203125 
+L 18.109375 0 
+L 9.078125 0 
+L 9.078125 75.984375 
+L 18.109375 75.984375 
+z
+" id="DejaVuSans-98"/>
+    </defs>
+    <g transform="translate(235.116903 22.396875)scale(0.2 -0.2)">
+     <use xlink:href="#DejaVuSans-65"/>
+     <use x="68.408203" xlink:href="#DejaVuSans-108"/>
+     <use x="96.191406" xlink:href="#DejaVuSans-115"/>
+     <use x="148.291016" xlink:href="#DejaVuSans-111"/>
+     <use x="209.472656" xlink:href="#DejaVuSans-32"/>
+     <use x="241.259766" xlink:href="#DejaVuSans-112"/>
+     <use x="304.736328" xlink:href="#DejaVuSans-111"/>
+     <use x="365.917969" xlink:href="#DejaVuSans-115"/>
+     <use x="418.017578" xlink:href="#DejaVuSans-115"/>
+     <use x="470.117188" xlink:href="#DejaVuSans-105"/>
+     <use x="497.900391" xlink:href="#DejaVuSans-98"/>
+     <use x="561.376953" xlink:href="#DejaVuSans-108"/>
+     <use x="589.160156" xlink:href="#DejaVuSans-101"/>
+     <use x="650.683594" xlink:href="#DejaVuSans-58"/>
+    </g>
+   </g>
+  </g>
+ </g>
+ <defs>
+  <clipPath id="p690fb9b53a">
+   <rect height="217.44" width="152.181818" x="44.845313" y="28.396875"/>
+  </clipPath>
+  <clipPath id="pa42bb7563e">
+   <rect height="217.44" width="152.181818" x="227.463494" y="28.396875"/>
+  </clipPath>
+ </defs>
+</svg>
diff --git a/docs/figures/complex_numbers_12_0.svg b/docs/figures/complex_numbers_12_0.svg
new file mode 100644
index 0000000000000000000000000000000000000000..e08cb91b4691baba10189f54c85f298e49c9a589
--- /dev/null
+++ b/docs/figures/complex_numbers_12_0.svg
@@ -0,0 +1,702 @@
+<?xml version="1.0" encoding="utf-8" standalone="no"?>
+<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
+  "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
+<!-- Created with matplotlib (https://matplotlib.org/) -->
+<svg height="252.317344pt" version="1.1" viewBox="0 0 380.054687 252.317344" width="380.054687pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
+ <metadata>
+  <rdf:RDF xmlns:cc="http://creativecommons.org/ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
+   <cc:Work>
+    <dc:type rdf:resource="http://purl.org/dc/dcmitype/StillImage"/>
+    <dc:date>2020-08-07T18:15:12.555335</dc:date>
+    <dc:format>image/svg+xml</dc:format>
+    <dc:creator>
+     <cc:Agent>
+      <dc:title>Matplotlib v3.3.0, https://matplotlib.org/</dc:title>
+     </cc:Agent>
+    </dc:creator>
+   </cc:Work>
+  </rdf:RDF>
+ </metadata>
+ <defs>
+  <style type="text/css">*{stroke-linecap:butt;stroke-linejoin:round;}</style>
+ </defs>
+ <g id="figure_1">
+  <g id="patch_1">
+   <path d="M 0 252.317344 
+L 380.054687 252.317344 
+L 380.054687 0 
+L 0 0 
+z
+" style="fill:none;"/>
+  </g>
+  <g id="axes_1">
+   <g id="patch_2">
+    <path d="M 30.103125 228.439219 
+L 364.903125 228.439219 
+L 364.903125 10.999219 
+L 30.103125 10.999219 
+z
+" style="fill:#ffffff;"/>
+   </g>
+   <g id="Quiver_1">
+    <path clip-path="url(#p60a97cd2b3)" d="M 196.935037 213.729596 
+L 320.778429 150.892391 
+L 318.522629 149.221233 
+L 331.423125 146.899219 
+L 321.931159 155.938971 
+L 321.914605 153.131637 
+L 198.071213 215.968842 
+L 196.935037 213.729596 
+" style="fill:#ff0000;"/>
+   </g>
+   <g id="Quiver_2">
+    <path clip-path="url(#p60a97cd2b3)" d="M 196.372613 214.30312 
+L 247.257728 108.962726 
+L 244.450606 109.001041 
+L 253.303125 99.334219 
+L 251.233676 112.277631 
+L 249.518751 110.054923 
+L 198.633637 215.395317 
+L 196.372613 214.30312 
+" style="fill:#008000;"/>
+   </g>
+   <g id="Quiver_3">
+    <path clip-path="url(#p60a97cd2b3)" d="M 196.480025 215.576918 
+L 80.269318 52.19182 
+L 78.950816 54.670319 
+L 74.743125 42.256219 
+L 85.089418 50.304124 
+L 82.315518 50.736422 
+L 198.526225 214.12152 
+L 196.480025 215.576918 
+" style="fill:#0000ff;"/>
+   </g>
+   <g id="patch_3">
+    <path clip-path="url(#p60a97cd2b3)" d="M 264.463125 214.849219 
+C 264.463125 209.673705 263.743759 204.519062 262.322295 199.509019 
+C 260.90083 194.498975 258.788732 189.673939 256.036696 185.149725 
+" style="fill:none;stroke:#ff0000;stroke-linejoin:miter;"/>
+   </g>
+   <g id="patch_4">
+    <path clip-path="url(#p60a97cd2b3)" d="M 242.143125 214.849219 
+C 242.143125 206.944769 239.626159 199.208343 234.900153 192.586413 
+C 230.174147 185.964484 223.440019 180.738574 215.521624 177.54802 
+" style="fill:none;stroke:#008000;stroke-linejoin:miter;"/>
+   </g>
+   <g id="patch_5">
+    <path clip-path="url(#p60a97cd2b3)" d="M 219.823125 214.849219 
+C 219.823125 211.180437 218.738679 207.578806 216.684677 204.425897 
+C 214.630676 201.272988 211.682309 198.684219 208.151938 196.933852 
+C 204.621567 195.183486 200.638428 194.335599 196.624508 194.480019 
+C 192.610589 194.624439 188.712827 195.755879 185.344166 197.754471 
+" style="fill:none;stroke:#0000ff;stroke-linejoin:miter;"/>
+   </g>
+   <g id="matplotlib.axis_1">
+    <g id="xtick_1">
+     <g id="line2d_1">
+      <path clip-path="url(#p60a97cd2b3)" d="M 30.103125 228.439219 
+L 30.103125 10.999219 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_2">
+      <defs>
+       <path d="M 0 0 
+L 0 3.5 
+" id="m812e164d02" style="stroke:#000000;stroke-width:0.8;"/>
+      </defs>
+      <g>
+       <use style="stroke:#000000;stroke-width:0.8;" x="30.103125" xlink:href="#m812e164d02" y="228.439219"/>
+      </g>
+     </g>
+     <g id="text_1">
+      <!-- −1.5 -->
+      <g transform="translate(17.961719 243.037656)scale(0.1 -0.1)">
+       <defs>
+        <path d="M 10.59375 35.5 
+L 73.1875 35.5 
+L 73.1875 27.203125 
+L 10.59375 27.203125 
+z
+" id="DejaVuSans-8722"/>
+        <path d="M 12.40625 8.296875 
+L 28.515625 8.296875 
+L 28.515625 63.921875 
+L 10.984375 60.40625 
+L 10.984375 69.390625 
+L 28.421875 72.90625 
+L 38.28125 72.90625 
+L 38.28125 8.296875 
+L 54.390625 8.296875 
+L 54.390625 0 
+L 12.40625 0 
+z
+" id="DejaVuSans-49"/>
+        <path d="M 10.6875 12.40625 
+L 21 12.40625 
+L 21 0 
+L 10.6875 0 
+z
+" id="DejaVuSans-46"/>
+        <path d="M 10.796875 72.90625 
+L 49.515625 72.90625 
+L 49.515625 64.59375 
+L 19.828125 64.59375 
+L 19.828125 46.734375 
+Q 21.96875 47.46875 24.109375 47.828125 
+Q 26.265625 48.1875 28.421875 48.1875 
+Q 40.625 48.1875 47.75 41.5 
+Q 54.890625 34.8125 54.890625 23.390625 
+Q 54.890625 11.625 47.5625 5.09375 
+Q 40.234375 -1.421875 26.90625 -1.421875 
+Q 22.3125 -1.421875 17.546875 -0.640625 
+Q 12.796875 0.140625 7.71875 1.703125 
+L 7.71875 11.625 
+Q 12.109375 9.234375 16.796875 8.0625 
+Q 21.484375 6.890625 26.703125 6.890625 
+Q 35.15625 6.890625 40.078125 11.328125 
+Q 45.015625 15.765625 45.015625 23.390625 
+Q 45.015625 31 40.078125 35.4375 
+Q 35.15625 39.890625 26.703125 39.890625 
+Q 22.75 39.890625 18.8125 39.015625 
+Q 14.890625 38.140625 10.796875 36.28125 
+z
+" id="DejaVuSans-53"/>
+       </defs>
+       <use xlink:href="#DejaVuSans-8722"/>
+       <use x="83.789062" xlink:href="#DejaVuSans-49"/>
+       <use x="147.412109" xlink:href="#DejaVuSans-46"/>
+       <use x="179.199219" xlink:href="#DejaVuSans-53"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_2">
+     <g id="line2d_3">
+      <path clip-path="url(#p60a97cd2b3)" d="M 85.903125 228.439219 
+L 85.903125 10.999219 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_4">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.8;" x="85.903125" xlink:href="#m812e164d02" y="228.439219"/>
+      </g>
+     </g>
+     <g id="text_2">
+      <!-- −1.0 -->
+      <g transform="translate(73.761719 243.037656)scale(0.1 -0.1)">
+       <defs>
+        <path d="M 31.78125 66.40625 
+Q 24.171875 66.40625 20.328125 58.90625 
+Q 16.5 51.421875 16.5 36.375 
+Q 16.5 21.390625 20.328125 13.890625 
+Q 24.171875 6.390625 31.78125 6.390625 
+Q 39.453125 6.390625 43.28125 13.890625 
+Q 47.125 21.390625 47.125 36.375 
+Q 47.125 51.421875 43.28125 58.90625 
+Q 39.453125 66.40625 31.78125 66.40625 
+z
+M 31.78125 74.21875 
+Q 44.046875 74.21875 50.515625 64.515625 
+Q 56.984375 54.828125 56.984375 36.375 
+Q 56.984375 17.96875 50.515625 8.265625 
+Q 44.046875 -1.421875 31.78125 -1.421875 
+Q 19.53125 -1.421875 13.0625 8.265625 
+Q 6.59375 17.96875 6.59375 36.375 
+Q 6.59375 54.828125 13.0625 64.515625 
+Q 19.53125 74.21875 31.78125 74.21875 
+z
+" id="DejaVuSans-48"/>
+       </defs>
+       <use xlink:href="#DejaVuSans-8722"/>
+       <use x="83.789062" xlink:href="#DejaVuSans-49"/>
+       <use x="147.412109" xlink:href="#DejaVuSans-46"/>
+       <use x="179.199219" xlink:href="#DejaVuSans-48"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_3">
+     <g id="line2d_5">
+      <path clip-path="url(#p60a97cd2b3)" d="M 141.703125 228.439219 
+L 141.703125 10.999219 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_6">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.8;" x="141.703125" xlink:href="#m812e164d02" y="228.439219"/>
+      </g>
+     </g>
+     <g id="text_3">
+      <!-- −0.5 -->
+      <g transform="translate(129.561719 243.037656)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-8722"/>
+       <use x="83.789062" xlink:href="#DejaVuSans-48"/>
+       <use x="147.412109" xlink:href="#DejaVuSans-46"/>
+       <use x="179.199219" xlink:href="#DejaVuSans-53"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_4">
+     <g id="line2d_7">
+      <path clip-path="url(#p60a97cd2b3)" d="M 197.503125 228.439219 
+L 197.503125 10.999219 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_8">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.8;" x="197.503125" xlink:href="#m812e164d02" y="228.439219"/>
+      </g>
+     </g>
+     <g id="text_4">
+      <!-- 0.0 -->
+      <g transform="translate(189.551563 243.037656)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-48"/>
+       <use x="63.623047" xlink:href="#DejaVuSans-46"/>
+       <use x="95.410156" xlink:href="#DejaVuSans-48"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_5">
+     <g id="line2d_9">
+      <path clip-path="url(#p60a97cd2b3)" d="M 253.303125 228.439219 
+L 253.303125 10.999219 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_10">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.8;" x="253.303125" xlink:href="#m812e164d02" y="228.439219"/>
+      </g>
+     </g>
+     <g id="text_5">
+      <!-- 0.5 -->
+      <g transform="translate(245.351563 243.037656)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-48"/>
+       <use x="63.623047" xlink:href="#DejaVuSans-46"/>
+       <use x="95.410156" xlink:href="#DejaVuSans-53"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_6">
+     <g id="line2d_11">
+      <path clip-path="url(#p60a97cd2b3)" d="M 309.103125 228.439219 
+L 309.103125 10.999219 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_12">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.8;" x="309.103125" xlink:href="#m812e164d02" y="228.439219"/>
+      </g>
+     </g>
+     <g id="text_6">
+      <!-- 1.0 -->
+      <g transform="translate(301.151563 243.037656)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-49"/>
+       <use x="63.623047" xlink:href="#DejaVuSans-46"/>
+       <use x="95.410156" xlink:href="#DejaVuSans-48"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_7">
+     <g id="line2d_13">
+      <path clip-path="url(#p60a97cd2b3)" d="M 364.903125 228.439219 
+L 364.903125 10.999219 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_14">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.8;" x="364.903125" xlink:href="#m812e164d02" y="228.439219"/>
+      </g>
+     </g>
+     <g id="text_7">
+      <!-- 1.5 -->
+      <g transform="translate(356.951563 243.037656)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-49"/>
+       <use x="63.623047" xlink:href="#DejaVuSans-46"/>
+       <use x="95.410156" xlink:href="#DejaVuSans-53"/>
+      </g>
+     </g>
+    </g>
+   </g>
+   <g id="matplotlib.axis_2">
+    <g id="ytick_1">
+     <g id="line2d_15">
+      <path clip-path="url(#p60a97cd2b3)" d="M 30.103125 214.849219 
+L 364.903125 214.849219 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_16">
+      <defs>
+       <path d="M 0 0 
+L -3.5 0 
+" id="mf503cdc515" style="stroke:#000000;stroke-width:0.8;"/>
+      </defs>
+      <g>
+       <use style="stroke:#000000;stroke-width:0.8;" x="30.103125" xlink:href="#mf503cdc515" y="214.849219"/>
+      </g>
+     </g>
+     <g id="text_8">
+      <!-- 0.0 -->
+      <g transform="translate(7.2 218.648438)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-48"/>
+       <use x="63.623047" xlink:href="#DejaVuSans-46"/>
+       <use x="95.410156" xlink:href="#DejaVuSans-48"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_2">
+     <g id="line2d_17">
+      <path clip-path="url(#p60a97cd2b3)" d="M 30.103125 180.874219 
+L 364.903125 180.874219 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_18">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.8;" x="30.103125" xlink:href="#mf503cdc515" y="180.874219"/>
+      </g>
+     </g>
+     <g id="text_9">
+      <!-- 0.5 -->
+      <g transform="translate(7.2 184.673437)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-48"/>
+       <use x="63.623047" xlink:href="#DejaVuSans-46"/>
+       <use x="95.410156" xlink:href="#DejaVuSans-53"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_3">
+     <g id="line2d_19">
+      <path clip-path="url(#p60a97cd2b3)" d="M 30.103125 146.899219 
+L 364.903125 146.899219 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_20">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.8;" x="30.103125" xlink:href="#mf503cdc515" y="146.899219"/>
+      </g>
+     </g>
+     <g id="text_10">
+      <!-- 1.0 -->
+      <g transform="translate(7.2 150.698437)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-49"/>
+       <use x="63.623047" xlink:href="#DejaVuSans-46"/>
+       <use x="95.410156" xlink:href="#DejaVuSans-48"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_4">
+     <g id="line2d_21">
+      <path clip-path="url(#p60a97cd2b3)" d="M 30.103125 112.924219 
+L 364.903125 112.924219 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_22">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.8;" x="30.103125" xlink:href="#mf503cdc515" y="112.924219"/>
+      </g>
+     </g>
+     <g id="text_11">
+      <!-- 1.5 -->
+      <g transform="translate(7.2 116.723437)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-49"/>
+       <use x="63.623047" xlink:href="#DejaVuSans-46"/>
+       <use x="95.410156" xlink:href="#DejaVuSans-53"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_5">
+     <g id="line2d_23">
+      <path clip-path="url(#p60a97cd2b3)" d="M 30.103125 78.949219 
+L 364.903125 78.949219 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_24">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.8;" x="30.103125" xlink:href="#mf503cdc515" y="78.949219"/>
+      </g>
+     </g>
+     <g id="text_12">
+      <!-- 2.0 -->
+      <g transform="translate(7.2 82.748437)scale(0.1 -0.1)">
+       <defs>
+        <path d="M 19.1875 8.296875 
+L 53.609375 8.296875 
+L 53.609375 0 
+L 7.328125 0 
+L 7.328125 8.296875 
+Q 12.9375 14.109375 22.625 23.890625 
+Q 32.328125 33.6875 34.8125 36.53125 
+Q 39.546875 41.84375 41.421875 45.53125 
+Q 43.3125 49.21875 43.3125 52.78125 
+Q 43.3125 58.59375 39.234375 62.25 
+Q 35.15625 65.921875 28.609375 65.921875 
+Q 23.96875 65.921875 18.8125 64.3125 
+Q 13.671875 62.703125 7.8125 59.421875 
+L 7.8125 69.390625 
+Q 13.765625 71.78125 18.9375 73 
+Q 24.125 74.21875 28.421875 74.21875 
+Q 39.75 74.21875 46.484375 68.546875 
+Q 53.21875 62.890625 53.21875 53.421875 
+Q 53.21875 48.921875 51.53125 44.890625 
+Q 49.859375 40.875 45.40625 35.40625 
+Q 44.1875 33.984375 37.640625 27.21875 
+Q 31.109375 20.453125 19.1875 8.296875 
+z
+" id="DejaVuSans-50"/>
+       </defs>
+       <use xlink:href="#DejaVuSans-50"/>
+       <use x="63.623047" xlink:href="#DejaVuSans-46"/>
+       <use x="95.410156" xlink:href="#DejaVuSans-48"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_6">
+     <g id="line2d_25">
+      <path clip-path="url(#p60a97cd2b3)" d="M 30.103125 44.974219 
+L 364.903125 44.974219 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_26">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.8;" x="30.103125" xlink:href="#mf503cdc515" y="44.974219"/>
+      </g>
+     </g>
+     <g id="text_13">
+      <!-- 2.5 -->
+      <g transform="translate(7.2 48.773438)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-50"/>
+       <use x="63.623047" xlink:href="#DejaVuSans-46"/>
+       <use x="95.410156" xlink:href="#DejaVuSans-53"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_7">
+     <g id="line2d_27">
+      <path clip-path="url(#p60a97cd2b3)" d="M 30.103125 10.999219 
+L 364.903125 10.999219 
+" style="fill:none;stroke:#000000;stroke-dasharray:0.8,1.32;stroke-dashoffset:0;stroke-width:0.8;"/>
+     </g>
+     <g id="line2d_28">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.8;" x="30.103125" xlink:href="#mf503cdc515" y="10.999219"/>
+      </g>
+     </g>
+     <g id="text_14">
+      <!-- 3.0 -->
+      <g transform="translate(7.2 14.798437)scale(0.1 -0.1)">
+       <defs>
+        <path d="M 40.578125 39.3125 
+Q 47.65625 37.796875 51.625 33 
+Q 55.609375 28.21875 55.609375 21.1875 
+Q 55.609375 10.40625 48.1875 4.484375 
+Q 40.765625 -1.421875 27.09375 -1.421875 
+Q 22.515625 -1.421875 17.65625 -0.515625 
+Q 12.796875 0.390625 7.625 2.203125 
+L 7.625 11.71875 
+Q 11.71875 9.328125 16.59375 8.109375 
+Q 21.484375 6.890625 26.8125 6.890625 
+Q 36.078125 6.890625 40.9375 10.546875 
+Q 45.796875 14.203125 45.796875 21.1875 
+Q 45.796875 27.640625 41.28125 31.265625 
+Q 36.765625 34.90625 28.71875 34.90625 
+L 20.21875 34.90625 
+L 20.21875 43.015625 
+L 29.109375 43.015625 
+Q 36.375 43.015625 40.234375 45.921875 
+Q 44.09375 48.828125 44.09375 54.296875 
+Q 44.09375 59.90625 40.109375 62.90625 
+Q 36.140625 65.921875 28.71875 65.921875 
+Q 24.65625 65.921875 20.015625 65.03125 
+Q 15.375 64.15625 9.8125 62.3125 
+L 9.8125 71.09375 
+Q 15.4375 72.65625 20.34375 73.4375 
+Q 25.25 74.21875 29.59375 74.21875 
+Q 40.828125 74.21875 47.359375 69.109375 
+Q 53.90625 64.015625 53.90625 55.328125 
+Q 53.90625 49.265625 50.4375 45.09375 
+Q 46.96875 40.921875 40.578125 39.3125 
+z
+" id="DejaVuSans-51"/>
+       </defs>
+       <use xlink:href="#DejaVuSans-51"/>
+       <use x="63.623047" xlink:href="#DejaVuSans-46"/>
+       <use x="95.410156" xlink:href="#DejaVuSans-48"/>
+      </g>
+     </g>
+    </g>
+   </g>
+   <g id="line2d_29">
+    <path clip-path="url(#p60a97cd2b3)" d="M -1 214.849219 
+L 381.054687 214.849219 
+" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:1.5;"/>
+   </g>
+   <g id="line2d_30">
+    <path clip-path="url(#p60a97cd2b3)" d="M 197.503125 253.317344 
+L 197.503125 -1 
+" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:1.5;"/>
+   </g>
+   <g id="patch_6">
+    <path d="M 30.103125 228.439219 
+L 30.103125 10.999219 
+" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/>
+   </g>
+   <g id="patch_7">
+    <path d="M 364.903125 228.439219 
+L 364.903125 10.999219 
+" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/>
+   </g>
+   <g id="patch_8">
+    <path d="M 30.103125 228.439219 
+L 364.903125 228.439219 
+" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/>
+   </g>
+   <g id="patch_9">
+    <path d="M 30.103125 10.999219 
+L 364.903125 10.999219 
+" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;"/>
+   </g>
+   <g id="text_15">
+    <!-- $z_1$ -->
+    <g transform="translate(331.423125 146.899219)scale(0.15 -0.15)">
+     <defs>
+      <path d="M 5.515625 54.6875 
+L 48.1875 54.6875 
+L 48.1875 46.484375 
+L 14.40625 7.171875 
+L 48.1875 7.171875 
+L 48.1875 0 
+L 4.296875 0 
+L 4.296875 8.203125 
+L 38.09375 47.515625 
+L 5.515625 47.515625 
+z
+" id="DejaVuSans-122"/>
+     </defs>
+     <use transform="translate(0 0.3125)" xlink:href="#DejaVuSans-122"/>
+     <use transform="translate(53.447266 -16.09375)scale(0.7)" xlink:href="#DejaVuSans-49"/>
+    </g>
+   </g>
+   <g id="text_16">
+    <!-- $\varphi_1$ -->
+    <g transform="translate(264.463125 201.938719)scale(0.15 -0.15)">
+     <defs>
+      <path d="M 40.484375 47.40625 
+Q 37.3125 47.40625 37.3125 40.328125 
+L 37.3125 6.84375 
+Q 41.9375 6.84375 46.578125 11.921875 
+Q 50.734375 16.453125 50.734375 27.34375 
+Q 50.734375 37.5 46.53125 42.96875 
+Q 43.109375 47.40625 40.484375 47.40625 
+z
+M 40.484375 55.078125 
+Q 47.3125 55.078125 53.515625 48.640625 
+Q 60.203125 41.75 60.203125 27.34375 
+Q 60.203125 14.109375 53.515625 6.25 
+Q 47.21875 -1.171875 37.3125 -1.171875 
+L 37.3125 -20.796875 
+L 28.375 -20.796875 
+L 28.375 -1.21875 
+Q 18.65625 -1.21875 12.109375 6.25 
+Q 5.46875 13.875 5.46875 27.296875 
+Q 5.46875 41.265625 12.109375 48.390625 
+Q 17.09375 53.71875 25.203125 55.078125 
+L 25.203125 47.125 
+Q 21.96875 46 19.140625 42.1875 
+Q 14.9375 36.578125 14.9375 27.296875 
+Q 14.9375 17.4375 19.140625 11.8125 
+Q 22.90625 6.78125 28.375 6.78125 
+L 28.375 40.328125 
+Q 28.375 55.078125 40.484375 55.078125 
+z
+" id="DejaVuSans-966"/>
+     </defs>
+     <use transform="translate(0 0.921875)" xlink:href="#DejaVuSans-966"/>
+     <use transform="translate(66.923828 -15.484375)scale(0.7)" xlink:href="#DejaVuSans-49"/>
+    </g>
+   </g>
+   <g id="text_17">
+    <!-- $z_2$ -->
+    <g transform="translate(253.303125 99.334219)scale(0.15 -0.15)">
+     <use transform="translate(0 0.3125)" xlink:href="#DejaVuSans-122"/>
+     <use transform="translate(53.447266 -16.09375)scale(0.7)" xlink:href="#DejaVuSans-50"/>
+    </g>
+   </g>
+   <g id="text_18">
+    <!-- $\varphi_2$ -->
+    <g transform="translate(234.331125 177.476719)scale(0.15 -0.15)">
+     <use transform="translate(0 0.921875)" xlink:href="#DejaVuSans-966"/>
+     <use transform="translate(66.923828 -15.484375)scale(0.7)" xlink:href="#DejaVuSans-50"/>
+    </g>
+   </g>
+   <g id="text_19">
+    <!-- $z_1 \cdot z_2 = z_3$ -->
+    <g transform="translate(74.743125 42.256219)scale(0.15 -0.15)">
+     <defs>
+      <path d="M 10.6875 40.921875 
+L 21 40.921875 
+L 21 28.515625 
+L 10.6875 28.515625 
+z
+" id="DejaVuSans-8901"/>
+      <path d="M 10.59375 45.40625 
+L 73.1875 45.40625 
+L 73.1875 37.203125 
+L 10.59375 37.203125 
+z
+M 10.59375 25.484375 
+L 73.1875 25.484375 
+L 73.1875 17.1875 
+L 10.59375 17.1875 
+z
+" id="DejaVuSans-61"/>
+     </defs>
+     <use transform="translate(0 0.3125)" xlink:href="#DejaVuSans-122"/>
+     <use transform="translate(53.447266 -16.09375)scale(0.7)" xlink:href="#DejaVuSans-49"/>
+     <use transform="translate(120.200195 0.3125)" xlink:href="#DejaVuSans-8901"/>
+     <use transform="translate(171.469727 0.3125)" xlink:href="#DejaVuSans-122"/>
+     <use transform="translate(224.916992 -16.09375)scale(0.7)" xlink:href="#DejaVuSans-50"/>
+     <use transform="translate(291.669922 0.3125)" xlink:href="#DejaVuSans-61"/>
+     <use transform="translate(394.941406 0.3125)" xlink:href="#DejaVuSans-122"/>
+     <use transform="translate(448.388672 -16.09375)scale(0.7)" xlink:href="#DejaVuSans-51"/>
+    </g>
+   </g>
+   <g id="text_20">
+    <!-- $\varphi_1 + \varphi_2$  -->
+    <g transform="translate(165.139125 153.854531)scale(0.15 -0.15)">
+     <defs>
+      <path d="M 46 62.703125 
+L 46 35.5 
+L 73.1875 35.5 
+L 73.1875 27.203125 
+L 46 27.203125 
+L 46 0 
+L 37.796875 0 
+L 37.796875 27.203125 
+L 10.59375 27.203125 
+L 10.59375 35.5 
+L 37.796875 35.5 
+L 37.796875 62.703125 
+z
+" id="DejaVuSans-43"/>
+      <path id="DejaVuSans-32"/>
+     </defs>
+     <use transform="translate(0 0.296875)" xlink:href="#DejaVuSans-966"/>
+     <use transform="translate(66.923828 -16.109375)scale(0.7)" xlink:href="#DejaVuSans-49"/>
+     <use transform="translate(133.676758 0.296875)" xlink:href="#DejaVuSans-43"/>
+     <use transform="translate(236.948242 0.296875)" xlink:href="#DejaVuSans-966"/>
+     <use transform="translate(303.87207 -16.109375)scale(0.7)" xlink:href="#DejaVuSans-50"/>
+     <use transform="translate(351.142578 0.296875)" xlink:href="#DejaVuSans-32"/>
+    </g>
+    <!--  $= \varphi_3$ -->
+    <g transform="translate(165.139125 170.681719)scale(0.15 -0.15)">
+     <use transform="translate(0 0.921875)" xlink:href="#DejaVuSans-32"/>
+     <use transform="translate(51.269531 0.921875)" xlink:href="#DejaVuSans-61"/>
+     <use transform="translate(154.541016 0.921875)" xlink:href="#DejaVuSans-966"/>
+     <use transform="translate(221.464844 -15.484375)scale(0.7)" xlink:href="#DejaVuSans-51"/>
+    </g>
+   </g>
+  </g>
+ </g>
+ <defs>
+  <clipPath id="p60a97cd2b3">
+   <rect height="217.44" width="334.8" x="30.103125" y="10.999219"/>
+  </clipPath>
+ </defs>
+</svg>
diff --git a/docs/figures/complex_numbers_5_0.svg b/docs/figures/complex_numbers_5_0.svg
new file mode 100644
index 0000000000000000000000000000000000000000..fa6201b919bbd0b9d7418640e588726f514eba09
--- /dev/null
+++ b/docs/figures/complex_numbers_5_0.svg
@@ -0,0 +1,888 @@
+<?xml version="1.0" encoding="utf-8" standalone="no"?>
+<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
+  "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
+<!-- Created with matplotlib (http://matplotlib.org/) -->
+<svg height="251pt" version="1.1" viewBox="0 0 375 251" width="375pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
+ <defs>
+  <style type="text/css">
+*{stroke-linecap:butt;stroke-linejoin:round;}
+  </style>
+ </defs>
+ <g id="figure_1">
+  <g id="patch_1">
+   <path d="
+M0 251.278
+L375.422 251.278
+L375.422 0
+L0 0
+z
+" style="fill:none;"/>
+  </g>
+  <g id="axes_1">
+   <g id="patch_2">
+    <path d="
+M33.4219 230.4
+L368.222 230.4
+L368.222 7.2
+L33.4219 7.2
+z
+" style="fill:none;"/>
+   </g>
+   <g id="patch_3">
+    <path clip-path="url(#pe880596f72)" d="
+M194.383 196.062
+C194.383 187.657 192.956 179.295 190.143 171.216
+C187.33 163.137 183.159 155.422 177.752 148.295" style="fill:none;stroke:#000000;"/>
+   </g>
+   <g id="patch_4">
+    <path clip-path="url(#pe880596f72)" d="
+M291.098 94.8864
+L274.174 108.521
+L270.434 105.134
+L85.0059 196.131
+L84.8532 195.992
+L270.281 104.995
+L266.54 101.608
+z
+" style="fill:#0000ff;stroke:#000000;stroke-width:2;"/>
+   </g>
+   <g id="line2d_1">
+    <path clip-path="url(#pe880596f72)" d="
+M33.4219 196.062
+L368.222 196.062" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:2.0;"/>
+   </g>
+   <g id="line2d_2">
+    <path clip-path="url(#pe880596f72)" d="
+M84.9296 230.4
+L84.9296 7.2" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:2.0;"/>
+   </g>
+   <g id="matplotlib.axis_1">
+    <g id="xtick_1">
+     <g id="line2d_3">
+      <path clip-path="url(#pe880596f72)" d="
+M33.4219 230.4
+L33.4219 7.2" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_4">
+      <defs>
+       <path d="
+M0 0
+L0 -4" id="m93b0483c22" style="stroke:#000000;stroke-width:0.5;"/>
+      </defs>
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="33.421875" xlink:href="#m93b0483c22" y="230.4"/>
+      </g>
+     </g>
+     <g id="line2d_5">
+      <defs>
+       <path d="
+M0 0
+L0 4" id="m741efc42ff" style="stroke:#000000;stroke-width:0.5;"/>
+      </defs>
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="33.421875" xlink:href="#m741efc42ff" y="7.2"/>
+      </g>
+     </g>
+     <g id="text_1">
+      <!-- −0.2 -->
+      <defs>
+       <path d="
+M31.7812 66.4062
+Q24.1719 66.4062 20.3281 58.9062
+Q16.5 51.4219 16.5 36.375
+Q16.5 21.3906 20.3281 13.8906
+Q24.1719 6.39062 31.7812 6.39062
+Q39.4531 6.39062 43.2812 13.8906
+Q47.125 21.3906 47.125 36.375
+Q47.125 51.4219 43.2812 58.9062
+Q39.4531 66.4062 31.7812 66.4062
+M31.7812 74.2188
+Q44.0469 74.2188 50.5156 64.5156
+Q56.9844 54.8281 56.9844 36.375
+Q56.9844 17.9688 50.5156 8.26562
+Q44.0469 -1.42188 31.7812 -1.42188
+Q19.5312 -1.42188 13.0625 8.26562
+Q6.59375 17.9688 6.59375 36.375
+Q6.59375 54.8281 13.0625 64.5156
+Q19.5312 74.2188 31.7812 74.2188" id="DejaVuSans-30"/>
+       <path d="
+M10.6875 12.4062
+L21 12.4062
+L21 0
+L10.6875 0
+z
+" id="DejaVuSans-2e"/>
+       <path d="
+M19.1875 8.29688
+L53.6094 8.29688
+L53.6094 0
+L7.32812 0
+L7.32812 8.29688
+Q12.9375 14.1094 22.625 23.8906
+Q32.3281 33.6875 34.8125 36.5312
+Q39.5469 41.8438 41.4219 45.5312
+Q43.3125 49.2188 43.3125 52.7812
+Q43.3125 58.5938 39.2344 62.25
+Q35.1562 65.9219 28.6094 65.9219
+Q23.9688 65.9219 18.8125 64.3125
+Q13.6719 62.7031 7.8125 59.4219
+L7.8125 69.3906
+Q13.7656 71.7812 18.9375 73
+Q24.125 74.2188 28.4219 74.2188
+Q39.75 74.2188 46.4844 68.5469
+Q53.2188 62.8906 53.2188 53.4219
+Q53.2188 48.9219 51.5312 44.8906
+Q49.8594 40.875 45.4062 35.4062
+Q44.1875 33.9844 37.6406 27.2188
+Q31.1094 20.4531 19.1875 8.29688" id="DejaVuSans-32"/>
+       <path d="
+M10.5938 35.5
+L73.1875 35.5
+L73.1875 27.2031
+L10.5938 27.2031
+z
+" id="DejaVuSans-2212"/>
+      </defs>
+      <g transform="translate(22.3109375 241.9984375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-2212"/>
+       <use x="83.7890625" xlink:href="#DejaVuSans-30"/>
+       <use x="147.412109375" xlink:href="#DejaVuSans-2e"/>
+       <use x="179.19921875" xlink:href="#DejaVuSans-32"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_2">
+     <g id="line2d_6">
+      <path clip-path="url(#pe880596f72)" d="
+M84.9296 230.4
+L84.9296 7.2" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_7">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="84.9295673077" xlink:href="#m93b0483c22" y="230.4"/>
+      </g>
+     </g>
+     <g id="line2d_8">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="84.9295673077" xlink:href="#m741efc42ff" y="7.2"/>
+      </g>
+     </g>
+     <g id="text_2">
+      <!-- 0.0 -->
+      <g transform="translate(77.6397235577 241.9984375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_3">
+     <g id="line2d_9">
+      <path clip-path="url(#pe880596f72)" d="
+M136.437 230.4
+L136.437 7.2" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_10">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="136.437259615" xlink:href="#m93b0483c22" y="230.4"/>
+      </g>
+     </g>
+     <g id="line2d_11">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="136.437259615" xlink:href="#m741efc42ff" y="7.2"/>
+      </g>
+     </g>
+     <g id="text_3">
+      <!-- 0.2 -->
+      <g transform="translate(129.316165865 241.9984375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-32"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_4">
+     <g id="line2d_12">
+      <path clip-path="url(#pe880596f72)" d="
+M187.945 230.4
+L187.945 7.2" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_13">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="187.944951923" xlink:href="#m93b0483c22" y="230.4"/>
+      </g>
+     </g>
+     <g id="line2d_14">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="187.944951923" xlink:href="#m741efc42ff" y="7.2"/>
+      </g>
+     </g>
+     <g id="text_4">
+      <!-- 0.4 -->
+      <defs>
+       <path d="
+M37.7969 64.3125
+L12.8906 25.3906
+L37.7969 25.3906
+z
+
+M35.2031 72.9062
+L47.6094 72.9062
+L47.6094 25.3906
+L58.0156 25.3906
+L58.0156 17.1875
+L47.6094 17.1875
+L47.6094 0
+L37.7969 0
+L37.7969 17.1875
+L4.89062 17.1875
+L4.89062 26.7031
+z
+" id="DejaVuSans-34"/>
+      </defs>
+      <g transform="translate(180.603545673 241.9984375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-34"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_5">
+     <g id="line2d_15">
+      <path clip-path="url(#pe880596f72)" d="
+M239.453 230.4
+L239.453 7.2" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_16">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="239.452644231" xlink:href="#m93b0483c22" y="230.4"/>
+      </g>
+     </g>
+     <g id="line2d_17">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="239.452644231" xlink:href="#m741efc42ff" y="7.2"/>
+      </g>
+     </g>
+     <g id="text_5">
+      <!-- 0.6 -->
+      <defs>
+       <path d="
+M33.0156 40.375
+Q26.375 40.375 22.4844 35.8281
+Q18.6094 31.2969 18.6094 23.3906
+Q18.6094 15.5312 22.4844 10.9531
+Q26.375 6.39062 33.0156 6.39062
+Q39.6562 6.39062 43.5312 10.9531
+Q47.4062 15.5312 47.4062 23.3906
+Q47.4062 31.2969 43.5312 35.8281
+Q39.6562 40.375 33.0156 40.375
+M52.5938 71.2969
+L52.5938 62.3125
+Q48.875 64.0625 45.0938 64.9844
+Q41.3125 65.9219 37.5938 65.9219
+Q27.8281 65.9219 22.6719 59.3281
+Q17.5312 52.7344 16.7969 39.4062
+Q19.6719 43.6562 24.0156 45.9219
+Q28.375 48.1875 33.5938 48.1875
+Q44.5781 48.1875 50.9531 41.5156
+Q57.3281 34.8594 57.3281 23.3906
+Q57.3281 12.1562 50.6875 5.35938
+Q44.0469 -1.42188 33.0156 -1.42188
+Q20.3594 -1.42188 13.6719 8.26562
+Q6.98438 17.9688 6.98438 36.375
+Q6.98438 53.6562 15.1875 63.9375
+Q23.3906 74.2188 37.2031 74.2188
+Q40.9219 74.2188 44.7031 73.4844
+Q48.4844 72.75 52.5938 71.2969" id="DejaVuSans-36"/>
+      </defs>
+      <g transform="translate(232.145612981 241.9984375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-36"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_6">
+     <g id="line2d_18">
+      <path clip-path="url(#pe880596f72)" d="
+M290.96 230.4
+L290.96 7.2" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_19">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="290.960336538" xlink:href="#m93b0483c22" y="230.4"/>
+      </g>
+     </g>
+     <g id="line2d_20">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="290.960336538" xlink:href="#m741efc42ff" y="7.2"/>
+      </g>
+     </g>
+     <g id="text_6">
+      <!-- 0.8 -->
+      <defs>
+       <path d="
+M31.7812 34.625
+Q24.75 34.625 20.7188 30.8594
+Q16.7031 27.0938 16.7031 20.5156
+Q16.7031 13.9219 20.7188 10.1562
+Q24.75 6.39062 31.7812 6.39062
+Q38.8125 6.39062 42.8594 10.1719
+Q46.9219 13.9688 46.9219 20.5156
+Q46.9219 27.0938 42.8906 30.8594
+Q38.875 34.625 31.7812 34.625
+M21.9219 38.8125
+Q15.5781 40.375 12.0312 44.7188
+Q8.5 49.0781 8.5 55.3281
+Q8.5 64.0625 14.7188 69.1406
+Q20.9531 74.2188 31.7812 74.2188
+Q42.6719 74.2188 48.875 69.1406
+Q55.0781 64.0625 55.0781 55.3281
+Q55.0781 49.0781 51.5312 44.7188
+Q48 40.375 41.7031 38.8125
+Q48.8281 37.1562 52.7969 32.3125
+Q56.7812 27.4844 56.7812 20.5156
+Q56.7812 9.90625 50.3125 4.23438
+Q43.8438 -1.42188 31.7812 -1.42188
+Q19.7344 -1.42188 13.25 4.23438
+Q6.78125 9.90625 6.78125 20.5156
+Q6.78125 27.4844 10.7812 32.3125
+Q14.7969 37.1562 21.9219 38.8125
+M18.3125 54.3906
+Q18.3125 48.7344 21.8438 45.5625
+Q25.3906 42.3906 31.7812 42.3906
+Q38.1406 42.3906 41.7188 45.5625
+Q45.3125 48.7344 45.3125 54.3906
+Q45.3125 60.0625 41.7188 63.2344
+Q38.1406 66.4062 31.7812 66.4062
+Q25.3906 66.4062 21.8438 63.2344
+Q18.3125 60.0625 18.3125 54.3906" id="DejaVuSans-38"/>
+      </defs>
+      <g transform="translate(283.680649038 241.9984375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-38"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_7">
+     <g id="line2d_21">
+      <path clip-path="url(#pe880596f72)" d="
+M342.468 230.4
+L342.468 7.2" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_22">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="342.468028846" xlink:href="#m93b0483c22" y="230.4"/>
+      </g>
+     </g>
+     <g id="line2d_23">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="342.468028846" xlink:href="#m741efc42ff" y="7.2"/>
+      </g>
+     </g>
+     <g id="text_7">
+      <!-- 1.0 -->
+      <defs>
+       <path d="
+M12.4062 8.29688
+L28.5156 8.29688
+L28.5156 63.9219
+L10.9844 60.4062
+L10.9844 69.3906
+L28.4219 72.9062
+L38.2812 72.9062
+L38.2812 8.29688
+L54.3906 8.29688
+L54.3906 0
+L12.4062 0
+z
+" id="DejaVuSans-31"/>
+      </defs>
+      <g transform="translate(335.397716346 241.9984375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-31"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+      </g>
+     </g>
+    </g>
+   </g>
+   <g id="matplotlib.axis_2">
+    <g id="ytick_1">
+     <g id="line2d_24">
+      <path clip-path="url(#pe880596f72)" d="
+M33.4219 230.4
+L368.222 230.4" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_25">
+      <defs>
+       <path d="
+M0 0
+L4 0" id="m728421d6d4" style="stroke:#000000;stroke-width:0.5;"/>
+      </defs>
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="33.421875" xlink:href="#m728421d6d4" y="230.4"/>
+      </g>
+     </g>
+     <g id="line2d_26">
+      <defs>
+       <path d="
+M0 0
+L-4 0" id="mcb0005524f" style="stroke:#000000;stroke-width:0.5;"/>
+      </defs>
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="368.221875" xlink:href="#mcb0005524f" y="230.4"/>
+      </g>
+     </g>
+     <g id="text_8">
+      <!-- −0.2 -->
+      <g transform="translate(7.2 233.159375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-2212"/>
+       <use x="83.7890625" xlink:href="#DejaVuSans-30"/>
+       <use x="147.412109375" xlink:href="#DejaVuSans-2e"/>
+       <use x="179.19921875" xlink:href="#DejaVuSans-32"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_2">
+     <g id="line2d_27">
+      <path clip-path="url(#pe880596f72)" d="
+M33.4219 196.062
+L368.222 196.062" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_28">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="33.421875" xlink:href="#m728421d6d4" y="196.061538462"/>
+      </g>
+     </g>
+     <g id="line2d_29">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="368.221875" xlink:href="#mcb0005524f" y="196.061538462"/>
+      </g>
+     </g>
+     <g id="text_9">
+      <!-- 0.0 -->
+      <g transform="translate(14.8421875 198.820913462)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_3">
+     <g id="line2d_30">
+      <path clip-path="url(#pe880596f72)" d="
+M33.4219 161.723
+L368.222 161.723" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_31">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="33.421875" xlink:href="#m728421d6d4" y="161.723076923"/>
+      </g>
+     </g>
+     <g id="line2d_32">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="368.221875" xlink:href="#mcb0005524f" y="161.723076923"/>
+      </g>
+     </g>
+     <g id="text_10">
+      <!-- 0.2 -->
+      <g transform="translate(15.1796875 164.482451923)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-32"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_4">
+     <g id="line2d_33">
+      <path clip-path="url(#pe880596f72)" d="
+M33.4219 127.385
+L368.222 127.385" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_34">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="33.421875" xlink:href="#m728421d6d4" y="127.384615385"/>
+      </g>
+     </g>
+     <g id="line2d_35">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="368.221875" xlink:href="#mcb0005524f" y="127.384615385"/>
+      </g>
+     </g>
+     <g id="text_11">
+      <!-- 0.4 -->
+      <g transform="translate(14.7390625 130.143990385)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-34"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_5">
+     <g id="line2d_36">
+      <path clip-path="url(#pe880596f72)" d="
+M33.4219 93.0462
+L368.222 93.0462" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_37">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="33.421875" xlink:href="#m728421d6d4" y="93.0461538462"/>
+      </g>
+     </g>
+     <g id="line2d_38">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="368.221875" xlink:href="#mcb0005524f" y="93.0461538462"/>
+      </g>
+     </g>
+     <g id="text_12">
+      <!-- 0.6 -->
+      <g transform="translate(14.8078125 95.8055288462)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-36"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_6">
+     <g id="line2d_39">
+      <path clip-path="url(#pe880596f72)" d="
+M33.4219 58.7077
+L368.222 58.7077" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_40">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="33.421875" xlink:href="#m728421d6d4" y="58.7076923077"/>
+      </g>
+     </g>
+     <g id="line2d_41">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="368.221875" xlink:href="#mcb0005524f" y="58.7076923077"/>
+      </g>
+     </g>
+     <g id="text_13">
+      <!-- 0.8 -->
+      <g transform="translate(14.8625 61.4670673077)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-38"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_7">
+     <g id="line2d_42">
+      <path clip-path="url(#pe880596f72)" d="
+M33.4219 24.3692
+L368.222 24.3692" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_43">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="33.421875" xlink:href="#m728421d6d4" y="24.3692307692"/>
+      </g>
+     </g>
+     <g id="line2d_44">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="368.221875" xlink:href="#mcb0005524f" y="24.3692307692"/>
+      </g>
+     </g>
+     <g id="text_14">
+      <!-- 1.0 -->
+      <g transform="translate(15.28125 27.1286057692)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-31"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+      </g>
+     </g>
+    </g>
+   </g>
+   <g id="patch_5">
+    <path d="
+M33.4219 7.2
+L368.222 7.2" style="fill:none;stroke:#000000;"/>
+   </g>
+   <g id="patch_6">
+    <path d="
+M368.222 230.4
+L368.222 7.2" style="fill:none;stroke:#000000;"/>
+   </g>
+   <g id="patch_7">
+    <path d="
+M33.4219 230.4
+L368.222 230.4" style="fill:none;stroke:#000000;"/>
+   </g>
+   <g id="patch_8">
+    <path d="
+M33.4219 230.4
+L33.4219 7.2" style="fill:none;stroke:#000000;"/>
+   </g>
+   <g id="text_15">
+    <!-- $r$ -->
+    <defs>
+     <path d="
+M7.71875 1.70312
+Q7.71875 2.29688 7.8125 2.59375
+L15.2812 32.4219
+Q16.0156 35.2031 16.0156 37.3125
+Q16.0156 41.6094 13.0938 41.6094
+Q9.96875 41.6094 8.45312 37.8594
+Q6.9375 34.125 5.51562 28.4219
+Q5.51562 28.125 5.21875 27.9531
+Q4.9375 27.7812 4.6875 27.7812
+L3.51562 27.7812
+Q3.17188 27.7812 2.92188 28.1406
+Q2.6875 28.5156 2.6875 28.8125
+Q3.76562 33.1562 4.76562 36.1719
+Q5.76562 39.2031 7.89062 41.6875
+Q10.0156 44.1875 13.1875 44.1875
+Q16.6562 44.1875 19.2656 42.1875
+Q21.875 40.1875 22.5156 36.9219
+Q25.0469 40.2344 28.2969 42.2031
+Q31.5469 44.1875 35.4062 44.1875
+Q38.5781 44.1875 40.9844 42.3281
+Q43.4062 40.4844 43.4062 37.3125
+Q43.4062 34.7656 41.8125 32.875
+Q40.2344 31 37.5938 31
+Q35.9844 31 34.8906 32
+Q33.7969 33.0156 33.7969 34.625
+Q33.7969 36.8125 35.4062 38.5469
+Q37.0156 40.2812 39.1094 40.2812
+Q37.5 41.6094 35.2031 41.6094
+Q30.9062 41.6094 27.7344 38.5469
+Q24.5625 35.5 22.0156 30.8125
+L14.8906 2.20312
+Q14.5469 0.828125 13.3438 -0.140625
+Q12.1562 -1.125 10.6875 -1.125
+Q9.46875 -1.125 8.59375 -0.34375
+Q7.71875 0.4375 7.71875 1.70312" id="Cmmi10-72"/>
+    </defs>
+    <g transform="translate(187.944951923 127.384615385)scale(0.3 -0.3)">
+     <use transform="translate(0.0 0.8125)" xlink:href="#Cmmi10-72"/>
+    </g>
+   </g>
+   <g id="text_16">
+    <!-- $\varphi$ -->
+    <defs>
+     <path d="
+M16.3125 -19
+Q16.3125 -18.6094 16.5 -17.8281
+L22.125 -0.203125
+Q14.6562 1.65625 9.8125 6.6875
+Q4.98438 11.7188 4.98438 19
+Q4.98438 22.6562 6.34375 27.25
+Q7.71875 31.8438 9.85938 35.9688
+Q12.0156 40.0938 14.5 42.8281
+Q15.0938 43.1094 15.1875 43.1094
+L16.4062 43.1094
+Q16.7031 43.1094 16.9375 42.8125
+Q17.1875 42.5312 17.1875 42.1875
+Q17.1875 41.7969 17 41.6094
+Q15.3281 39.7969 13.7344 37.1875
+Q12.1562 34.5781 10.9062 31.6875
+Q9.67188 28.8125 8.84375 25.6406
+Q8.01562 22.4688 8.01562 20.125
+Q8.01562 14.2031 12.7188 10.5625
+Q17.4375 6.9375 23.875 5.71875
+L26.7031 14.7031
+Q28.5625 20.5156 30.3906 25.0781
+Q32.2344 29.6406 34.9844 34
+Q37.75 38.375 41.6562 41.2812
+Q45.5625 44.1875 50.3906 44.1875
+Q54.2031 44.1875 56.7656 42.2812
+Q59.3281 40.375 60.5625 37.2031
+Q61.8125 34.0312 61.8125 30.4219
+Q61.8125 24.4688 59.1719 18.7812
+Q56.5469 13.0938 51.9531 8.5625
+Q47.3594 4.04688 41.5938 1.45312
+Q35.8438 -1.125 29.9844 -1.125
+Q29.2031 -1.07812 28.2969 -1.03125
+Q27.3906 -0.984375 26.8125 -0.984375
+L23.4844 -18.4062
+Q23.1875 -19.875 21.9844 -20.8281
+Q20.7969 -21.7812 19.2812 -21.7812
+Q18.0625 -21.7812 17.1875 -21.0156
+Q16.3125 -20.2656 16.3125 -19
+M27.875 5.17188
+Q29 5.07812 31.1094 5.07812
+Q37.3125 5.07812 43.7188 8.125
+Q50.1406 11.1875 54.3594 16.5
+Q58.5938 21.8281 58.5938 28.0781
+Q58.5938 30.9062 57.4375 33.1562
+Q56.2969 35.4062 54.2188 36.6875
+Q52.1562 37.9844 49.4219 37.9844
+Q41.6562 37.9844 36.4219 30.4688
+Q31.2031 22.9531 29.5938 14.3125
+z
+" id="Cmmi10-27"/>
+    </defs>
+    <g transform="translate(187.944951923 166.873846154)scale(0.3 -0.3)">
+     <use transform="translate(0.0 0.8125)" xlink:href="#Cmmi10-27"/>
+    </g>
+   </g>
+   <g id="text_17">
+    <!-- $a$ -->
+    <defs>
+     <path d="
+M17.3906 -1.125
+Q11.0781 -1.125 7.4375 3.64062
+Q3.8125 8.40625 3.8125 14.8906
+Q3.8125 21.2969 7.125 28.1719
+Q10.4531 35.0625 16.0938 39.625
+Q21.7344 44.1875 28.2188 44.1875
+Q31.2031 44.1875 33.5469 42.5781
+Q35.8906 40.9688 37.2031 38.1875
+Q38.3281 42.1875 41.6094 42.1875
+Q42.875 42.1875 43.7188 41.4219
+Q44.5781 40.6719 44.5781 39.4062
+Q44.5781 39.1094 44.5469 38.9531
+Q44.5312 38.8125 44.4844 38.625
+L37.5 10.6875
+Q36.8125 7.71875 36.8125 5.8125
+Q36.8125 1.51562 39.7031 1.51562
+Q42.8281 1.51562 44.4531 5.48438
+Q46.0938 9.46875 47.2188 14.7031
+Q47.4062 15.2812 48 15.2812
+L49.2188 15.2812
+Q49.6094 15.2812 49.8438 14.9375
+Q50.0938 14.5938 50.0938 14.3125
+Q48.3438 7.32812 46.2656 3.09375
+Q44.1875 -1.125 39.5 -1.125
+Q36.1406 -1.125 33.5469 0.84375
+Q30.9531 2.82812 30.3281 6.10938
+Q23.875 -1.125 17.3906 -1.125
+M17.4844 1.51562
+Q21.0938 1.51562 24.4844 4.21875
+Q27.875 6.9375 30.3281 10.5938
+Q30.4219 10.6875 30.4219 10.8906
+L35.7969 32.625
+L35.8906 32.9062
+Q35.2969 36.4688 33.3125 39.0312
+Q31.3438 41.6094 27.9844 41.6094
+Q24.6094 41.6094 21.7031 38.8438
+Q18.7969 36.0781 16.7969 32.3281
+Q14.8438 28.3281 13.0625 21.3438
+Q11.2812 14.3594 11.2812 10.5
+Q11.2812 7.03125 12.7656 4.26562
+Q14.2656 1.51562 17.4844 1.51562" id="Cmmi10-61"/>
+    </defs>
+    <g transform="translate(283.234182692 211.513846154)scale(0.3 -0.3)">
+     <use transform="translate(0.0 0.8125)" xlink:href="#Cmmi10-61"/>
+    </g>
+   </g>
+   <g id="text_18">
+    <!-- $b$ -->
+    <defs>
+     <path d="
+M17.2812 -1.125
+Q11.2344 -1.125 7.85938 3.60938
+Q4.5 8.34375 4.5 14.7031
+Q4.5 15.625 4.95312 18.3281
+Q5.42188 21.0469 5.42188 21.6875
+L15.0938 60.5
+Q15.4844 62.2031 15.5781 63.1875
+Q15.5781 64.7969 9.07812 64.7969
+Q8.10938 64.7969 8.10938 66.1094
+Q8.15625 66.3594 8.32812 66.9844
+Q8.5 67.625 8.76562 67.9688
+Q9.03125 68.3125 9.51562 68.3125
+L23 69.3906
+Q24.2188 69.3906 24.2188 68.1094
+L16.7969 38.625
+Q22.4688 44.1875 28.2188 44.1875
+Q32.4688 44.1875 35.5156 41.9375
+Q38.5781 39.7031 40.0938 36.0312
+Q41.6094 32.375 41.6094 28.2188
+Q41.6094 23.3906 39.7188 18.2344
+Q37.8438 13.0938 34.5156 8.67188
+Q31.2031 4.25 26.75 1.5625
+Q22.3125 -1.125 17.2812 -1.125
+M17.4844 1.51562
+Q20.9062 1.51562 23.875 4.375
+Q26.8594 7.23438 28.7188 10.7969
+Q30.7188 14.7969 32.4531 21.6562
+Q34.1875 28.5156 34.1875 32.625
+Q34.1875 36.1875 32.6875 38.8906
+Q31.2031 41.6094 27.9844 41.6094
+Q24.3594 41.6094 21.0625 38.9375
+Q17.7812 36.2812 15.2812 32.625
+L12.5 21.2969
+Q10.8906 14.9844 10.7969 11.1875
+Q10.7969 7.42188 12.4219 4.46875
+Q14.0625 1.51562 17.4844 1.51562" id="Cmmi10-62"/>
+    </defs>
+    <g transform="translate(61.7511057692 98.1969230769)scale(0.3 -0.3)">
+     <use transform="translate(0.0 0.609375)" xlink:href="#Cmmi10-62"/>
+    </g>
+   </g>
+   <g id="text_19">
+    <!-- $z$ -->
+    <defs>
+     <path d="
+M4.89062 -1.125
+Q4.10938 -1.125 4.10938 -0.203125
+Q4.10938 0.296875 4.29688 0.484375
+Q6.98438 5.125 10.7656 9.34375
+Q14.5469 13.5781 19.3594 17.8906
+Q24.1719 22.2188 29.0312 26.5625
+Q33.8906 30.9062 36.9219 34.2812
+L36.5312 34.2812
+Q34.3281 34.2812 30.0781 35.6875
+Q25.8281 37.1094 23.3906 37.1094
+Q20.75 37.1094 18.25 35.9531
+Q15.7656 34.8125 15.0938 32.4219
+Q14.9375 31.6875 14.3125 31.6875
+L13.0938 31.6875
+Q12.3125 31.6875 12.3125 32.7188
+L12.3125 33.0156
+Q13.0938 35.9375 14.875 38.4688
+Q16.6562 41.0156 19.2656 42.5938
+Q21.875 44.1875 24.7031 44.1875
+Q26.7031 44.1875 28.0156 43.2812
+Q29.3438 42.3906 31.0938 40.4844
+Q32.8594 38.5781 33.9531 37.75
+Q35.0625 36.9219 36.7188 36.9219
+Q38.9219 36.9219 40.6562 38.9219
+Q42.3906 40.9219 44.0938 43.8906
+Q44.3906 44.1875 44.8281 44.1875
+L46 44.1875
+Q46.3438 44.1875 46.5625 43.9375
+Q46.7812 43.7031 46.7812 43.3125
+Q46.7812 42.9688 46.5781 42.6719
+Q43.8906 38.0312 40.2969 34
+Q36.7188 29.9844 30.9219 24.7812
+Q25.1406 19.5781 21.1562 15.9844
+Q17.1875 12.4062 13.7188 8.59375
+Q14.5 8.79688 15.8281 8.79688
+Q18.2656 8.79688 22.4844 7.39062
+Q26.7031 6 29 6
+Q31.5 6 34.0312 7.07812
+Q36.5781 8.15625 38.4219 10.1094
+Q40.2812 12.0625 40.9219 14.5938
+Q41.1562 15.2812 41.7031 15.2812
+L42.9219 15.2812
+Q43.3125 15.2812 43.5469 14.9688
+Q43.7969 14.6562 43.7969 14.3125
+Q43.7969 14.2031 43.7031 14.0156
+Q42.7812 10.2031 40.4844 6.76562
+Q38.1875 3.32812 34.8438 1.09375
+Q31.5 -1.125 27.6875 -1.125
+Q25.7812 -1.125 24.4531 -0.234375
+Q23.1406 0.640625 21.3594 2.5625
+Q19.5781 4.5 18.4531 5.34375
+Q17.3281 6.20312 15.7188 6.20312
+Q10.75 6.20312 6.78125 -0.78125
+Q6.45312 -1.125 6.10938 -1.125
+z
+" id="Cmmi10-7a"/>
+    </defs>
+    <g transform="translate(296.111105769 89.6123076923)scale(0.3 -0.3)">
+     <use transform="translate(0.0 0.8125)" xlink:href="#Cmmi10-7a"/>
+    </g>
+   </g>
+  </g>
+ </g>
+ <defs>
+  <clipPath id="pe880596f72">
+   <rect height="223.2" width="334.8" x="33.421875" y="7.2"/>
+  </clipPath>
+ </defs>
+</svg>
diff --git a/docs/figures/complex_numbers_8_0.svg b/docs/figures/complex_numbers_8_0.svg
new file mode 100644
index 0000000000000000000000000000000000000000..ea4289014bb07cf1ccf264474631ab7984c01d3d
--- /dev/null
+++ b/docs/figures/complex_numbers_8_0.svg
@@ -0,0 +1,816 @@
+<?xml version="1.0" encoding="utf-8" standalone="no"?>
+<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
+  "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
+<!-- Created with matplotlib (http://matplotlib.org/) -->
+<svg height="251pt" version="1.1" viewBox="0 0 367 251" width="367pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
+ <defs>
+  <style type="text/css">
+*{stroke-linecap:butt;stroke-linejoin:round;}
+  </style>
+ </defs>
+ <g id="figure_1">
+  <g id="patch_1">
+   <path d="
+M0 251.278
+L367.78 251.278
+L367.78 0
+L0 0
+z
+" style="fill:none;"/>
+  </g>
+  <g id="axes_1">
+   <g id="patch_2">
+    <path d="
+M25.7797 230.4
+L360.58 230.4
+L360.58 7.2
+L25.7797 7.2
+z
+" style="fill:none;"/>
+   </g>
+   <g id="patch_3">
+    <path clip-path="url(#p7e90272699)" d="
+M179.23 146.7
+L170.162 154.14
+L168.112 152.317
+L67.6715 202.537
+L67.5878 202.463
+L168.028 152.243
+L165.977 150.42
+z
+" style="fill:#0000ff;stroke:#0000ff;stroke-width:2;"/>
+   </g>
+   <g id="patch_4">
+    <path clip-path="url(#p7e90272699)" d="
+M109.48 109.5
+L108.812 119.076
+L105.538 118.421
+L67.6965 202.513
+L67.5629 202.487
+L105.404 118.394
+L102.131 117.74
+z
+" style="fill:#ff0000;stroke:#ff0000;stroke-width:2;"/>
+   </g>
+   <g id="patch_5">
+    <path clip-path="url(#p7e90272699)" d="
+M221.08 53.7
+L216.05 62.6808
+L213.234 61.3899
+L67.6872 202.526
+L67.5722 202.474
+L213.119 61.3372
+L210.303 60.0464
+z
+" style="fill:#008000;stroke:#008000;stroke-width:2;"/>
+   </g>
+   <g id="line2d_1">
+    <path clip-path="url(#p7e90272699)" d="
+M25.7797 202.5
+L360.58 202.5" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:2.0;"/>
+   </g>
+   <g id="line2d_2">
+    <path clip-path="url(#p7e90272699)" d="
+M67.6297 230.4
+L67.6297 7.2" style="fill:none;stroke:#000000;stroke-linecap:square;stroke-width:2.0;"/>
+   </g>
+   <g id="line2d_3">
+    <path clip-path="url(#p7e90272699)" d="
+M179.23 202.5
+L179.23 146.7" style="fill:none;stroke:#0000ff;stroke-linecap:square;"/>
+   </g>
+   <g id="line2d_4">
+    <path clip-path="url(#p7e90272699)" d="
+M67.6297 146.7
+L179.23 146.7" style="fill:none;stroke:#0000ff;stroke-linecap:square;"/>
+   </g>
+   <g id="line2d_5">
+    <path clip-path="url(#p7e90272699)" d="
+M109.48 202.5
+L109.48 109.5" style="fill:none;stroke:#ff0000;stroke-linecap:square;"/>
+   </g>
+   <g id="line2d_6">
+    <path clip-path="url(#p7e90272699)" d="
+M67.6297 109.5
+L109.48 109.5" style="fill:none;stroke:#ff0000;stroke-linecap:square;"/>
+   </g>
+   <g id="line2d_7">
+    <path clip-path="url(#p7e90272699)" d="
+M221.08 202.5
+L221.08 53.7" style="fill:none;stroke:#008000;stroke-linecap:square;"/>
+   </g>
+   <g id="line2d_8">
+    <path clip-path="url(#p7e90272699)" d="
+M67.6297 53.7
+L221.08 53.7" style="fill:none;stroke:#008000;stroke-linecap:square;"/>
+   </g>
+   <g id="line2d_9">
+    <path clip-path="url(#p7e90272699)" d="
+M179.23 146.7
+L221.08 53.7" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;"/>
+   </g>
+   <g id="line2d_10">
+    <path clip-path="url(#p7e90272699)" d="
+M109.48 109.5
+L221.08 53.7" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;"/>
+   </g>
+   <g id="matplotlib.axis_1">
+    <g id="xtick_1">
+     <g id="line2d_11">
+      <path clip-path="url(#p7e90272699)" d="
+M67.6297 230.4
+L67.6297 7.2" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_12">
+      <defs>
+       <path d="
+M0 0
+L0 -4" id="m93b0483c22" style="stroke:#000000;stroke-width:0.5;"/>
+      </defs>
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="67.6296875" xlink:href="#m93b0483c22" y="230.4"/>
+      </g>
+     </g>
+     <g id="line2d_13">
+      <defs>
+       <path d="
+M0 0
+L0 4" id="m741efc42ff" style="stroke:#000000;stroke-width:0.5;"/>
+      </defs>
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="67.6296875" xlink:href="#m741efc42ff" y="7.2"/>
+      </g>
+     </g>
+     <g id="text_1">
+      <!-- 0.0 -->
+      <defs>
+       <path d="
+M31.7812 66.4062
+Q24.1719 66.4062 20.3281 58.9062
+Q16.5 51.4219 16.5 36.375
+Q16.5 21.3906 20.3281 13.8906
+Q24.1719 6.39062 31.7812 6.39062
+Q39.4531 6.39062 43.2812 13.8906
+Q47.125 21.3906 47.125 36.375
+Q47.125 51.4219 43.2812 58.9062
+Q39.4531 66.4062 31.7812 66.4062
+M31.7812 74.2188
+Q44.0469 74.2188 50.5156 64.5156
+Q56.9844 54.8281 56.9844 36.375
+Q56.9844 17.9688 50.5156 8.26562
+Q44.0469 -1.42188 31.7812 -1.42188
+Q19.5312 -1.42188 13.0625 8.26562
+Q6.59375 17.9688 6.59375 36.375
+Q6.59375 54.8281 13.0625 64.5156
+Q19.5312 74.2188 31.7812 74.2188" id="DejaVuSans-30"/>
+       <path d="
+M10.6875 12.4062
+L21 12.4062
+L21 0
+L10.6875 0
+z
+" id="DejaVuSans-2e"/>
+      </defs>
+      <g transform="translate(60.33984375 241.9984375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_2">
+     <g id="line2d_14">
+      <path clip-path="url(#p7e90272699)" d="
+M137.38 230.4
+L137.38 7.2" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_15">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="137.3796875" xlink:href="#m93b0483c22" y="230.4"/>
+      </g>
+     </g>
+     <g id="line2d_16">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="137.3796875" xlink:href="#m741efc42ff" y="7.2"/>
+      </g>
+     </g>
+     <g id="text_2">
+      <!-- 0.5 -->
+      <defs>
+       <path d="
+M10.7969 72.9062
+L49.5156 72.9062
+L49.5156 64.5938
+L19.8281 64.5938
+L19.8281 46.7344
+Q21.9688 47.4688 24.1094 47.8281
+Q26.2656 48.1875 28.4219 48.1875
+Q40.625 48.1875 47.75 41.5
+Q54.8906 34.8125 54.8906 23.3906
+Q54.8906 11.625 47.5625 5.09375
+Q40.2344 -1.42188 26.9062 -1.42188
+Q22.3125 -1.42188 17.5469 -0.640625
+Q12.7969 0.140625 7.71875 1.70312
+L7.71875 11.625
+Q12.1094 9.23438 16.7969 8.0625
+Q21.4844 6.89062 26.7031 6.89062
+Q35.1562 6.89062 40.0781 11.3281
+Q45.0156 15.7656 45.0156 23.3906
+Q45.0156 31 40.0781 35.4375
+Q35.1562 39.8906 26.7031 39.8906
+Q22.75 39.8906 18.8125 39.0156
+Q14.8906 38.1406 10.7969 36.2812
+z
+" id="DejaVuSans-35"/>
+      </defs>
+      <g transform="translate(130.19453125 241.9984375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-35"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_3">
+     <g id="line2d_17">
+      <path clip-path="url(#p7e90272699)" d="
+M207.13 230.4
+L207.13 7.2" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_18">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="207.1296875" xlink:href="#m93b0483c22" y="230.4"/>
+      </g>
+     </g>
+     <g id="line2d_19">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="207.1296875" xlink:href="#m741efc42ff" y="7.2"/>
+      </g>
+     </g>
+     <g id="text_3">
+      <!-- 1.0 -->
+      <defs>
+       <path d="
+M12.4062 8.29688
+L28.5156 8.29688
+L28.5156 63.9219
+L10.9844 60.4062
+L10.9844 69.3906
+L28.4219 72.9062
+L38.2812 72.9062
+L38.2812 8.29688
+L54.3906 8.29688
+L54.3906 0
+L12.4062 0
+z
+" id="DejaVuSans-31"/>
+      </defs>
+      <g transform="translate(200.059375 241.9984375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-31"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_4">
+     <g id="line2d_20">
+      <path clip-path="url(#p7e90272699)" d="
+M276.88 230.4
+L276.88 7.2" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_21">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="276.8796875" xlink:href="#m93b0483c22" y="230.4"/>
+      </g>
+     </g>
+     <g id="line2d_22">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="276.8796875" xlink:href="#m741efc42ff" y="7.2"/>
+      </g>
+     </g>
+     <g id="text_4">
+      <!-- 1.5 -->
+      <g transform="translate(269.9140625 241.9984375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-31"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-35"/>
+      </g>
+     </g>
+    </g>
+    <g id="xtick_5">
+     <g id="line2d_23">
+      <path clip-path="url(#p7e90272699)" d="
+M346.63 230.4
+L346.63 7.2" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_24">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="346.6296875" xlink:href="#m93b0483c22" y="230.4"/>
+      </g>
+     </g>
+     <g id="line2d_25">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="346.6296875" xlink:href="#m741efc42ff" y="7.2"/>
+      </g>
+     </g>
+     <g id="text_5">
+      <!-- 2.0 -->
+      <defs>
+       <path d="
+M19.1875 8.29688
+L53.6094 8.29688
+L53.6094 0
+L7.32812 0
+L7.32812 8.29688
+Q12.9375 14.1094 22.625 23.8906
+Q32.3281 33.6875 34.8125 36.5312
+Q39.5469 41.8438 41.4219 45.5312
+Q43.3125 49.2188 43.3125 52.7812
+Q43.3125 58.5938 39.2344 62.25
+Q35.1562 65.9219 28.6094 65.9219
+Q23.9688 65.9219 18.8125 64.3125
+Q13.6719 62.7031 7.8125 59.4219
+L7.8125 69.3906
+Q13.7656 71.7812 18.9375 73
+Q24.125 74.2188 28.4219 74.2188
+Q39.75 74.2188 46.4844 68.5469
+Q53.2188 62.8906 53.2188 53.4219
+Q53.2188 48.9219 51.5312 44.8906
+Q49.8594 40.875 45.4062 35.4062
+Q44.1875 33.9844 37.6406 27.2188
+Q31.1094 20.4531 19.1875 8.29688" id="DejaVuSans-32"/>
+      </defs>
+      <g transform="translate(339.3765625 241.9984375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-32"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+      </g>
+     </g>
+    </g>
+   </g>
+   <g id="matplotlib.axis_2">
+    <g id="ytick_1">
+     <g id="line2d_26">
+      <path clip-path="url(#p7e90272699)" d="
+M25.7797 202.5
+L360.58 202.5" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_27">
+      <defs>
+       <path d="
+M0 0
+L4 0" id="m728421d6d4" style="stroke:#000000;stroke-width:0.5;"/>
+      </defs>
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="25.7796875" xlink:href="#m728421d6d4" y="202.5"/>
+      </g>
+     </g>
+     <g id="line2d_28">
+      <defs>
+       <path d="
+M0 0
+L-4 0" id="mcb0005524f" style="stroke:#000000;stroke-width:0.5;"/>
+      </defs>
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="360.5796875" xlink:href="#mcb0005524f" y="202.5"/>
+      </g>
+     </g>
+     <g id="text_6">
+      <!-- 0.0 -->
+      <g transform="translate(7.2 205.259375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_2">
+     <g id="line2d_29">
+      <path clip-path="url(#p7e90272699)" d="
+M25.7797 156
+L360.58 156" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_30">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="25.7796875" xlink:href="#m728421d6d4" y="156.0"/>
+      </g>
+     </g>
+     <g id="line2d_31">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="360.5796875" xlink:href="#mcb0005524f" y="156.0"/>
+      </g>
+     </g>
+     <g id="text_7">
+      <!-- 0.5 -->
+      <g transform="translate(7.409375 158.759375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-30"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-35"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_3">
+     <g id="line2d_32">
+      <path clip-path="url(#p7e90272699)" d="
+M25.7797 109.5
+L360.58 109.5" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_33">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="25.7796875" xlink:href="#m728421d6d4" y="109.5"/>
+      </g>
+     </g>
+     <g id="line2d_34">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="360.5796875" xlink:href="#mcb0005524f" y="109.5"/>
+      </g>
+     </g>
+     <g id="text_8">
+      <!-- 1.0 -->
+      <g transform="translate(7.6390625 112.259375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-31"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_4">
+     <g id="line2d_35">
+      <path clip-path="url(#p7e90272699)" d="
+M25.7797 63
+L360.58 63" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_36">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="25.7796875" xlink:href="#m728421d6d4" y="63.0"/>
+      </g>
+     </g>
+     <g id="line2d_37">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="360.5796875" xlink:href="#mcb0005524f" y="63.0"/>
+      </g>
+     </g>
+     <g id="text_9">
+      <!-- 1.5 -->
+      <g transform="translate(7.8484375 65.759375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-31"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-35"/>
+      </g>
+     </g>
+    </g>
+    <g id="ytick_5">
+     <g id="line2d_38">
+      <path clip-path="url(#p7e90272699)" d="
+M25.7797 16.5
+L360.58 16.5" style="fill:none;stroke:#000000;stroke-dasharray:1.000000,3.000000;stroke-dashoffset:0.0;stroke-width:0.5;"/>
+     </g>
+     <g id="line2d_39">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="25.7796875" xlink:href="#m728421d6d4" y="16.5"/>
+      </g>
+     </g>
+     <g id="line2d_40">
+      <g>
+       <use style="stroke:#000000;stroke-width:0.5;" x="360.5796875" xlink:href="#mcb0005524f" y="16.5"/>
+      </g>
+     </g>
+     <g id="text_10">
+      <!-- 2.0 -->
+      <g transform="translate(7.2734375 19.259375)scale(0.1 -0.1)">
+       <use xlink:href="#DejaVuSans-32"/>
+       <use x="63.623046875" xlink:href="#DejaVuSans-2e"/>
+       <use x="95.41015625" xlink:href="#DejaVuSans-30"/>
+      </g>
+     </g>
+    </g>
+   </g>
+   <g id="patch_6">
+    <path d="
+M25.7797 7.2
+L360.58 7.2" style="fill:none;stroke:#000000;"/>
+   </g>
+   <g id="patch_7">
+    <path d="
+M360.58 230.4
+L360.58 7.2" style="fill:none;stroke:#000000;"/>
+   </g>
+   <g id="patch_8">
+    <path d="
+M25.7797 230.4
+L360.58 230.4" style="fill:none;stroke:#000000;"/>
+   </g>
+   <g id="patch_9">
+    <path d="
+M25.7797 230.4
+L25.7797 7.2" style="fill:none;stroke:#000000;"/>
+   </g>
+   <g id="text_11">
+    <!-- $a_1$ -->
+    <defs>
+     <path d="
+M17.3906 -1.125
+Q11.0781 -1.125 7.4375 3.64062
+Q3.8125 8.40625 3.8125 14.8906
+Q3.8125 21.2969 7.125 28.1719
+Q10.4531 35.0625 16.0938 39.625
+Q21.7344 44.1875 28.2188 44.1875
+Q31.2031 44.1875 33.5469 42.5781
+Q35.8906 40.9688 37.2031 38.1875
+Q38.3281 42.1875 41.6094 42.1875
+Q42.875 42.1875 43.7188 41.4219
+Q44.5781 40.6719 44.5781 39.4062
+Q44.5781 39.1094 44.5469 38.9531
+Q44.5312 38.8125 44.4844 38.625
+L37.5 10.6875
+Q36.8125 7.71875 36.8125 5.8125
+Q36.8125 1.51562 39.7031 1.51562
+Q42.8281 1.51562 44.4531 5.48438
+Q46.0938 9.46875 47.2188 14.7031
+Q47.4062 15.2812 48 15.2812
+L49.2188 15.2812
+Q49.6094 15.2812 49.8438 14.9375
+Q50.0938 14.5938 50.0938 14.3125
+Q48.3438 7.32812 46.2656 3.09375
+Q44.1875 -1.125 39.5 -1.125
+Q36.1406 -1.125 33.5469 0.84375
+Q30.9531 2.82812 30.3281 6.10938
+Q23.875 -1.125 17.3906 -1.125
+M17.4844 1.51562
+Q21.0938 1.51562 24.4844 4.21875
+Q27.875 6.9375 30.3281 10.5938
+Q30.4219 10.6875 30.4219 10.8906
+L35.7969 32.625
+L35.8906 32.9062
+Q35.2969 36.4688 33.3125 39.0312
+Q31.3438 41.6094 27.9844 41.6094
+Q24.6094 41.6094 21.7031 38.8438
+Q18.7969 36.0781 16.7969 32.3281
+Q14.8438 28.3281 13.0625 21.3438
+Q11.2812 14.3594 11.2812 10.5
+Q11.2812 7.03125 12.7656 4.26562
+Q14.2656 1.51562 17.4844 1.51562" id="Cmmi10-61"/>
+     <path d="
+M9.28125 0
+L9.28125 3.51562
+Q21.7812 3.51562 21.7812 6.6875
+L21.7812 59.1875
+Q16.6094 56.6875 8.6875 56.6875
+L8.6875 60.2031
+Q20.9531 60.2031 27.2031 66.6094
+L28.6094 66.6094
+Q28.9531 66.6094 29.2656 66.3281
+Q29.5938 66.0625 29.5938 65.7188
+L29.5938 6.6875
+Q29.5938 3.51562 42.0938 3.51562
+L42.0938 0
+z
+" id="Cmr10-31"/>
+    </defs>
+    <g transform="translate(168.0696875 219.24)scale(0.24 -0.24)">
+     <use transform="translate(0.0 0.8125)" xlink:href="#Cmmi10-61"/>
+     <use transform="translate(52.783203125 -24.696875)scale(0.7)" xlink:href="#Cmr10-31"/>
+    </g>
+   </g>
+   <g id="text_12">
+    <!-- $b_1$ -->
+    <defs>
+     <path d="
+M17.2812 -1.125
+Q11.2344 -1.125 7.85938 3.60938
+Q4.5 8.34375 4.5 14.7031
+Q4.5 15.625 4.95312 18.3281
+Q5.42188 21.0469 5.42188 21.6875
+L15.0938 60.5
+Q15.4844 62.2031 15.5781 63.1875
+Q15.5781 64.7969 9.07812 64.7969
+Q8.10938 64.7969 8.10938 66.1094
+Q8.15625 66.3594 8.32812 66.9844
+Q8.5 67.625 8.76562 67.9688
+Q9.03125 68.3125 9.51562 68.3125
+L23 69.3906
+Q24.2188 69.3906 24.2188 68.1094
+L16.7969 38.625
+Q22.4688 44.1875 28.2188 44.1875
+Q32.4688 44.1875 35.5156 41.9375
+Q38.5781 39.7031 40.0938 36.0312
+Q41.6094 32.375 41.6094 28.2188
+Q41.6094 23.3906 39.7188 18.2344
+Q37.8438 13.0938 34.5156 8.67188
+Q31.2031 4.25 26.75 1.5625
+Q22.3125 -1.125 17.2812 -1.125
+M17.4844 1.51562
+Q20.9062 1.51562 23.875 4.375
+Q26.8594 7.23438 28.7188 10.7969
+Q30.7188 14.7969 32.4531 21.6562
+Q34.1875 28.5156 34.1875 32.625
+Q34.1875 36.1875 32.6875 38.8906
+Q31.2031 41.6094 27.9844 41.6094
+Q24.3594 41.6094 21.0625 38.9375
+Q17.7812 36.2812 15.2812 32.625
+L12.5 21.2969
+Q10.8906 14.9844 10.7969 11.1875
+Q10.7969 7.42188 12.4219 4.46875
+Q14.0625 1.51562 17.4844 1.51562" id="Cmmi10-62"/>
+    </defs>
+    <g transform="translate(42.5196875 147.816)scale(0.24 -0.24)">
+     <use transform="translate(0.0 0.609375)" xlink:href="#Cmmi10-62"/>
+     <use transform="translate(42.919921875 -24.9)scale(0.7)" xlink:href="#Cmr10-31"/>
+    </g>
+   </g>
+   <g id="text_13">
+    <!-- $z_1$ -->
+    <defs>
+     <path d="
+M4.89062 -1.125
+Q4.10938 -1.125 4.10938 -0.203125
+Q4.10938 0.296875 4.29688 0.484375
+Q6.98438 5.125 10.7656 9.34375
+Q14.5469 13.5781 19.3594 17.8906
+Q24.1719 22.2188 29.0312 26.5625
+Q33.8906 30.9062 36.9219 34.2812
+L36.5312 34.2812
+Q34.3281 34.2812 30.0781 35.6875
+Q25.8281 37.1094 23.3906 37.1094
+Q20.75 37.1094 18.25 35.9531
+Q15.7656 34.8125 15.0938 32.4219
+Q14.9375 31.6875 14.3125 31.6875
+L13.0938 31.6875
+Q12.3125 31.6875 12.3125 32.7188
+L12.3125 33.0156
+Q13.0938 35.9375 14.875 38.4688
+Q16.6562 41.0156 19.2656 42.5938
+Q21.875 44.1875 24.7031 44.1875
+Q26.7031 44.1875 28.0156 43.2812
+Q29.3438 42.3906 31.0938 40.4844
+Q32.8594 38.5781 33.9531 37.75
+Q35.0625 36.9219 36.7188 36.9219
+Q38.9219 36.9219 40.6562 38.9219
+Q42.3906 40.9219 44.0938 43.8906
+Q44.3906 44.1875 44.8281 44.1875
+L46 44.1875
+Q46.3438 44.1875 46.5625 43.9375
+Q46.7812 43.7031 46.7812 43.3125
+Q46.7812 42.9688 46.5781 42.6719
+Q43.8906 38.0312 40.2969 34
+Q36.7188 29.9844 30.9219 24.7812
+Q25.1406 19.5781 21.1562 15.9844
+Q17.1875 12.4062 13.7188 8.59375
+Q14.5 8.79688 15.8281 8.79688
+Q18.2656 8.79688 22.4844 7.39062
+Q26.7031 6 29 6
+Q31.5 6 34.0312 7.07812
+Q36.5781 8.15625 38.4219 10.1094
+Q40.2812 12.0625 40.9219 14.5938
+Q41.1562 15.2812 41.7031 15.2812
+L42.9219 15.2812
+Q43.3125 15.2812 43.5469 14.9688
+Q43.7969 14.6562 43.7969 14.3125
+Q43.7969 14.2031 43.7031 14.0156
+Q42.7812 10.2031 40.4844 6.76562
+Q38.1875 3.32812 34.8438 1.09375
+Q31.5 -1.125 27.6875 -1.125
+Q25.7812 -1.125 24.4531 -0.234375
+Q23.1406 0.640625 21.3594 2.5625
+Q19.5781 4.5 18.4531 5.34375
+Q17.3281 6.20312 15.7188 6.20312
+Q10.75 6.20312 6.78125 -0.78125
+Q6.45312 -1.125 6.10938 -1.125
+z
+" id="Cmmi10-7a"/>
+    </defs>
+    <g transform="translate(168.0696875 141.12)scale(0.24 -0.24)">
+     <use transform="translate(0.0 0.8125)" xlink:href="#Cmmi10-7a"/>
+     <use transform="translate(46.484375 -24.696875)scale(0.7)" xlink:href="#Cmr10-31"/>
+    </g>
+   </g>
+   <g id="text_14">
+    <!-- $a_2$ -->
+    <defs>
+     <path d="
+M4.98438 0
+L4.98438 2.6875
+Q4.98438 2.9375 5.17188 3.21875
+L20.7031 20.4062
+Q24.2188 24.2188 26.4062 26.7969
+Q28.6094 29.3906 30.75 32.7656
+Q32.9062 36.1406 34.1562 39.625
+Q35.4062 43.1094 35.4062 47.0156
+Q35.4062 51.125 33.8906 54.8594
+Q32.375 58.5938 29.375 60.8438
+Q26.375 63.0938 22.125 63.0938
+Q17.7812 63.0938 14.3125 60.4688
+Q10.8438 57.8594 9.42188 53.7188
+Q9.8125 53.8125 10.5 53.8125
+Q12.75 53.8125 14.3281 52.2969
+Q15.9219 50.7812 15.9219 48.3906
+Q15.9219 46.0938 14.3281 44.5
+Q12.75 42.9219 10.5 42.9219
+Q8.15625 42.9219 6.5625 44.5469
+Q4.98438 46.1875 4.98438 48.3906
+Q4.98438 52.1562 6.39062 55.4375
+Q7.8125 58.7344 10.4688 61.2969
+Q13.1406 63.875 16.4844 65.2344
+Q19.8281 66.6094 23.5781 66.6094
+Q29.2969 66.6094 34.2188 64.1875
+Q39.1562 61.7656 42.0312 57.3438
+Q44.9219 52.9375 44.9219 47.0156
+Q44.9219 42.6719 43.0156 38.7656
+Q41.1094 34.8594 38.125 31.6562
+Q35.1562 28.4688 30.5156 24.4062
+Q25.875 20.3594 24.4219 19
+L13.0938 8.10938
+L22.7031 8.10938
+Q29.7812 8.10938 34.5469 8.21875
+Q39.3125 8.34375 39.5938 8.59375
+Q40.7656 9.85938 42 17.8281
+L44.9219 17.8281
+L42.0938 0
+z
+" id="Cmr10-32"/>
+    </defs>
+    <g transform="translate(105.2946875 219.24)scale(0.24 -0.24)">
+     <use transform="translate(0.0 0.8125)" xlink:href="#Cmmi10-61"/>
+     <use transform="translate(52.783203125 -24.696875)scale(0.7)" xlink:href="#Cmr10-32"/>
+    </g>
+   </g>
+   <g id="text_15">
+    <!-- $b_2$ -->
+    <g transform="translate(42.5196875 111.36)scale(0.24 -0.24)">
+     <use transform="translate(0.0 0.609375)" xlink:href="#Cmmi10-62"/>
+     <use transform="translate(42.919921875 -24.9)scale(0.7)" xlink:href="#Cmr10-32"/>
+    </g>
+   </g>
+   <g id="text_16">
+    <!-- $z_2$ -->
+    <g transform="translate(105.2946875 100.2)scale(0.24 -0.24)">
+     <use transform="translate(0.0 0.8125)" xlink:href="#Cmmi10-7a"/>
+     <use transform="translate(46.484375 -24.696875)scale(0.7)" xlink:href="#Cmr10-32"/>
+    </g>
+   </g>
+   <g id="text_17">
+    <!-- $a_1+a_2$ -->
+    <defs>
+     <path d="
+M7.51562 23
+Q6.6875 23 6.14062 23.625
+Q5.60938 24.2656 5.60938 25
+Q5.60938 25.7344 6.14062 26.3594
+Q6.6875 27 7.51562 27
+L36.9219 27
+L36.9219 56.5
+Q36.9219 57.2812 37.5 57.7812
+Q38.0938 58.2969 38.9219 58.2969
+Q39.6562 58.2969 40.2812 57.7812
+Q40.9219 57.2812 40.9219 56.5
+L40.9219 27
+L70.3125 27
+Q71.0469 27 71.5781 26.3594
+Q72.125 25.7344 72.125 25
+Q72.125 24.2656 71.5781 23.625
+Q71.0469 23 70.3125 23
+L40.9219 23
+L40.9219 -6.5
+Q40.9219 -7.28125 40.2812 -7.78125
+Q39.6562 -8.29688 38.9219 -8.29688
+Q38.0938 -8.29688 37.5 -7.78125
+Q36.9219 -7.28125 36.9219 -6.5
+L36.9219 23
+z
+" id="Cmr10-2b"/>
+    </defs>
+    <g transform="translate(205.7346875 219.24)scale(0.24 -0.24)">
+     <use transform="translate(0.0 0.703125)" xlink:href="#Cmmi10-61"/>
+     <use transform="translate(52.783203125 -24.80625)scale(0.7)" xlink:href="#Cmr10-31"/>
+     <use transform="translate(120.341796875 0.703125)" xlink:href="#Cmr10-2b"/>
+     <use transform="translate(204.400390625 0.703125)" xlink:href="#Cmmi10-61"/>
+     <use transform="translate(257.18359375 -24.80625)scale(0.7)" xlink:href="#Cmr10-32"/>
+    </g>
+   </g>
+   <g id="text_18">
+    <!-- $b_1+b_2$ -->
+    <g transform="translate(42.5196875 56.676)scale(0.24 -0.24)">
+     <use transform="translate(0.0 0.609375)" xlink:href="#Cmmi10-62"/>
+     <use transform="translate(42.919921875 -24.9)scale(0.7)" xlink:href="#Cmr10-31"/>
+     <use transform="translate(110.478515625 0.609375)" xlink:href="#Cmr10-2b"/>
+     <use transform="translate(194.537109375 0.609375)" xlink:href="#Cmmi10-62"/>
+     <use transform="translate(237.45703125 -24.9)scale(0.7)" xlink:href="#Cmr10-32"/>
+    </g>
+   </g>
+   <g id="text_19">
+    <!-- $z_1+z_2$ -->
+    <g transform="translate(205.7346875 38.82)scale(0.24 -0.24)">
+     <use transform="translate(0.0 0.703125)" xlink:href="#Cmmi10-7a"/>
+     <use transform="translate(46.484375 -24.80625)scale(0.7)" xlink:href="#Cmr10-31"/>
+     <use transform="translate(114.04296875 0.703125)" xlink:href="#Cmr10-2b"/>
+     <use transform="translate(198.1015625 0.703125)" xlink:href="#Cmmi10-7a"/>
+     <use transform="translate(244.5859375 -24.80625)scale(0.7)" xlink:href="#Cmr10-32"/>
+    </g>
+   </g>
+  </g>
+ </g>
+ <defs>
+  <clipPath id="p7e90272699">
+   <rect height="223.2" width="334.8" x="25.7796875" y="7.2"/>
+  </clipPath>
+ </defs>
+</svg>
diff --git a/docs/figures/shape_polar.svg b/docs/figures/shape_polar.svg
new file mode 100644
index 0000000000000000000000000000000000000000..1b9c640fc611c516f01270562ab28fddc050daf7
--- /dev/null
+++ b/docs/figures/shape_polar.svg
@@ -0,0 +1,173 @@
+<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<!-- Created with Inkscape (http://www.inkscape.org/) -->
+
+<svg
+   xmlns:ns1="http://www.iki.fi/pav/software/textext/"
+   xmlns:dc="http://purl.org/dc/elements/1.1/"
+   xmlns:cc="http://creativecommons.org/ns#"
+   xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
+   xmlns:svg="http://www.w3.org/2000/svg"
+   xmlns="http://www.w3.org/2000/svg"
+   xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
+   xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
+   width="118.31828mm"
+   height="86.78421mm"
+   viewBox="0 0 118.31828 86.78421"
+   version="1.1"
+   id="svg8"
+   inkscape:version="0.92.3 (2405546, 2018-03-11)"
+   sodipodi:docname="shape_polar.svg">
+  <sodipodi:namedview
+     id="base"
+     pagecolor="#ffffff"
+     bordercolor="#666666"
+     borderopacity="1.0"
+     inkscape:pageopacity="0.0"
+     inkscape:pageshadow="2"
+     inkscape:zoom="1.0013187"
+     inkscape:cx="-58.530136"
+     inkscape:cy="82.218788"
+     inkscape:document-units="mm"
+     inkscape:current-layer="layer1"
+     showgrid="false"
+     inkscape:window-width="2450"
+     inkscape:window-height="1343"
+     inkscape:window-x="110"
+     inkscape:window-y="41"
+     inkscape:window-maximized="1"
+     fit-margin-top="0"
+     fit-margin-left="0"
+     fit-margin-right="0"
+     fit-margin-bottom="0" />
+  <defs
+     id="defs2">
+    <marker
+       inkscape:isstock="true"
+       style="overflow:visible"
+       id="Arrow1Mend"
+       refX="0"
+       refY="0"
+       orient="auto"
+       inkscape:stockid="Arrow1Mend">
+      <path
+         transform="matrix(-0.4,0,0,-0.4,-4,0)"
+         style="fill:#0000ff;fill-opacity:1;fill-rule:evenodd;stroke:#0000ff;stroke-width:1.00000003pt;stroke-opacity:1"
+         d="M 0,0 5,-5 -12.5,0 5,5 Z"
+         id="path840"
+         inkscape:connector-curvature="0" />
+    </marker>
+    <marker
+       inkscape:isstock="true"
+       style="overflow:visible"
+       id="Arrow1Lend"
+       refX="0"
+       refY="0"
+       orient="auto"
+       inkscape:stockid="Arrow1Lend">
+      <path
+         transform="matrix(-0.8,0,0,-0.8,-10,0)"
+         style="fill:#0000ff;fill-opacity:1;fill-rule:evenodd;stroke:#0000ff;stroke-width:1.00000003pt;stroke-opacity:1"
+         d="M 0,0 5,-5 -12.5,0 5,5 Z"
+         id="path834"
+         inkscape:connector-curvature="0" />
+    </marker>
+  </defs>
+  <metadata
+     id="metadata5">
+    <rdf:RDF>
+      <cc:Work
+         rdf:about="">
+        <dc:format>image/svg+xml</dc:format>
+        <dc:type
+           rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
+        <dc:title></dc:title>
+      </cc:Work>
+    </rdf:RDF>
+  </metadata>
+  <g
+     id="layer1"
+     inkscape:groupmode="layer"
+     inkscape:label="Layer 1"
+     transform="translate(-70.281469,-83.469512)">
+    <path
+       inkscape:connector-curvature="0"
+       id="path817"
+       d="M 83.498221,136.87366 C 72.190973,131.50655 67.942166,116.81252 72.722969,105.62967 76.438252,94.6673 88.416595,86.117542 100.11169,89.479262 c 7.06925,3.361833 15.02361,2.169934 22.49825,0.831585 10.96393,-1.787054 22.91388,-5.528237 33.60862,-0.759907 7.92755,4.702393 10.70044,14.13494 14.80023,21.7763 3.63136,11.76529 -5.64927,22.51374 -14.98054,28.34477 -2.12926,5.23033 -1.22422,13.39794 -5.71733,18.63886 -7.37973,11.9547 -24.12418,14.26872 -36.03439,8.19903 -9.44522,-2.09054 -14.25857,-11.18965 -18.281292,-19.09118 -2.800323,-4.76163 -6.870042,-9.34731 -12.507017,-10.54506 z"
+       style="fill:#e6e6e6;fill-opacity:1;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1" />
+    <path
+       sodipodi:nodetypes="cc"
+       inkscape:connector-curvature="0"
+       id="path829"
+       d="M 122.60498,125.7758 160.6548,95.917259"
+       style="fill:none;stroke:#0000ff;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#Arrow1Mend)" />
+    <g
+       id="g859"
+       ns1:jacobian_sqrt="1.85829"
+       inkscapeversion="0.92.3"
+       ns1:alignment="middle center"
+       ns1:scale="5.26759398439"
+       ns1:preamble="/home/michael/.config/inkscape/extensions/default_packages.tex"
+       ns1:text="$r(\\varphi)$"
+       ns1:pdfconverter="pdf2svg"
+       ns1:texconverter="pdflatex"
+       ns1:version="0.8.1"
+       transform="matrix(1.2923211,0,0,1.2923211,-26.894799,-81.017925)"
+       style="fill:#0000ff;fill-opacity:1">
+      <g
+         id="surface1"
+         style="fill:#0000ff;fill-opacity:1">
+        <g
+           id="g844"
+           style="fill:#0000ff;fill-opacity:1">
+          <path
+             id="path842"
+             transform="translate(148.712,134.765)"
+             d="m 0.875,-0.59375 c -0.03125,0.15625 -0.09375,0.390625 -0.09375,0.4375 0,0.171875 0.140625,0.265625 0.296875,0.265625 0.125,0 0.296875,-0.078125 0.375,-0.28125 C 1.46875,-0.203125 1.796875,-1.5625 1.84375,-1.75 c 0.078125,-0.328125 0.265625,-1.015625 0.3125,-1.296875 0.046875,-0.125 0.328125,-0.59375 0.5625,-0.8125 0.078125,-0.0625 0.375,-0.328125 0.796875,-0.328125 0.265625,0 0.40625,0.125 0.421875,0.125 -0.296875,0.046875 -0.515625,0.28125 -0.515625,0.546875 0,0.15625 0.109375,0.34375 0.375,0.34375 0.265625,0 0.546875,-0.234375 0.546875,-0.59375 0,-0.34375 -0.3125,-0.640625 -0.828125,-0.640625 C 2.875,-4.40625 2.4375,-3.921875 2.25,-3.640625 2.15625,-4.09375 1.796875,-4.40625 1.328125,-4.40625 0.875,-4.40625 0.6875,-4.015625 0.59375,-3.84375 0.421875,-3.5 0.296875,-2.90625 0.296875,-2.875 c 0,0.109375 0.09375,0.109375 0.109375,0.109375 0.109375,0 0.109375,-0.015625 0.171875,-0.234375 0.171875,-0.703125 0.375,-1.1875 0.734375,-1.1875 0.15625,0 0.296875,0.078125 0.296875,0.453125 0,0.21875 -0.03125,0.328125 -0.15625,0.84375 z m 0,0"
+             style="fill:#0000ff;fill-opacity:1;stroke:none;stroke-width:0"
+             inkscape:connector-curvature="0" />
+        </g>
+        <g
+           id="g848"
+           style="fill:#0000ff;fill-opacity:1">
+          <path
+             id="path846"
+             transform="translate(153.484,134.765)"
+             d="m 3.296875,2.390625 c 0,-0.03125 0,-0.046875 -0.171875,-0.21875 C 1.890625,0.921875 1.5625,-0.96875 1.5625,-2.5 c 0,-1.734375 0.375,-3.46875 1.609375,-4.703125 0.125,-0.125 0.125,-0.140625 0.125,-0.171875 0,-0.078125 -0.03125,-0.109375 -0.09375,-0.109375 -0.109375,0 -1,0.6875 -1.59375,1.953125 -0.5,1.09375 -0.625,2.203125 -0.625,3.03125 0,0.78125 0.109375,1.984375 0.65625,3.125 C 2.25,1.84375 3.09375,2.5 3.203125,2.5 c 0.0625,0 0.09375,-0.03125 0.09375,-0.109375 z m 0,0"
+             style="fill:#0000ff;fill-opacity:1;stroke:none;stroke-width:0"
+             inkscape:connector-curvature="0" />
+        </g>
+        <g
+           id="g852"
+           style="fill:#0000ff;fill-opacity:1">
+          <path
+             id="path850"
+             transform="translate(157.358,134.765)"
+             d="M 1.6875,1.6875 C 1.65625,1.828125 1.640625,1.84375 1.640625,1.890625 c 0,0.21875 0.1875,0.28125 0.296875,0.28125 0.046875,0 0.265625,-0.03125 0.359375,-0.265625 C 2.328125,1.828125 2.375,1.5 2.65625,0.09375 c 0.078125,0 0.15625,0.015625 0.328125,0.015625 1.65625,0 3.1875,-1.5625 3.1875,-3.140625 0,-0.78125 -0.390625,-1.375 -1.140625,-1.375 -1.4375,0 -2.046875,1.9375 -2.640625,3.875 C 1.3125,-0.734375 0.75,-1.28125 0.75,-2 c 0,-0.28125 0.234375,-1.375 0.828125,-2.0625 0.09375,-0.09375 0.09375,-0.109375 0.09375,-0.140625 0,-0.03125 -0.03125,-0.09375 -0.125,-0.09375 -0.28125,0 -1.046875,1.453125 -1.046875,2.40625 0,0.9375 0.65625,1.65625 1.71875,1.90625 z m 1.390625,-2.15625 c -0.09375,0 -0.109375,0 -0.1875,-0.015625 -0.125,0 -0.125,0 -0.125,-0.03125 0,-0.015625 0.171875,-0.9375 0.1875,-1.078125 0.3125,-1.28125 1.09375,-2.234375 1.984375,-2.234375 0.6875,0 0.953125,0.53125 0.953125,1.015625 0,1.125 -1.28125,2.34375 -2.8125,2.34375 z m 0,0"
+             style="fill:#0000ff;fill-opacity:1;stroke:none;stroke-width:0"
+             inkscape:connector-curvature="0" />
+        </g>
+        <g
+           id="g856"
+           style="fill:#0000ff;fill-opacity:1">
+          <path
+             id="path854"
+             transform="translate(163.875,134.765)"
+             d="m 2.875,-2.5 c 0,-0.765625 -0.109375,-1.96875 -0.65625,-3.109375 -0.59375,-1.21875 -1.453125,-1.875 -1.546875,-1.875 -0.0625,0 -0.109375,0.046875 -0.109375,0.109375 0,0.03125 0,0.046875 0.1875,0.234375 0.984375,0.984375 1.546875,2.5625 1.546875,4.640625 0,1.71875 -0.359375,3.46875 -1.59375,4.71875 C 0.5625,2.34375 0.5625,2.359375 0.5625,2.390625 0.5625,2.453125 0.609375,2.5 0.671875,2.5 0.765625,2.5 1.671875,1.8125 2.25,0.546875 2.765625,-0.546875 2.875,-1.65625 2.875,-2.5 Z m 0,0"
+             style="fill:#0000ff;fill-opacity:1;stroke:none;stroke-width:0"
+             inkscape:connector-curvature="0" />
+        </g>
+      </g>
+    </g>
+    <path
+       style="fill:#000000;fill-opacity:1;stroke:none;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1;paint-order:normal"
+       id="path882"
+       sodipodi:type="arc"
+       sodipodi:cx="122.34084"
+       sodipodi:cy="125.79015"
+       sodipodi:rx="1.3211745"
+       sodipodi:ry="1.3211745"
+       sodipodi:start="0"
+       sodipodi:end="6.2723294"
+       d="m 123.66202,125.79015 a 1.3211745,1.3211745 0 0 1 -1.31759,1.32117 1.3211745,1.3211745 0 0 1 -1.32474,-1.314 1.3211745,1.3211745 0 0 1 1.3104,-1.3283 1.3211745,1.3211745 0 0 1 1.33185,1.30679 l -1.3211,0.0143 z" />
+  </g>
+</svg>
diff --git a/docs/index.md b/docs/index.md
new file mode 100644
index 0000000000000000000000000000000000000000..caa61103dfc58183dcc8dcf11febd1153acab4fd
--- /dev/null
+++ b/docs/index.md
@@ -0,0 +1,31 @@
+# Mathematics for Quantum Physics
+
+*Mathematics for Quantum Mechanics* gives you a compact introduction and review
+of the basic mathematical tools commonly used in quantum mechanics. Throughout
+the course, we keep quantum mechanics applications in mind, but at the
+core, this is still a mathematics course. For this reason, applying what you learned
+to examples and exercises is **crucial**!
+
+!!! tip "Learning goals"
+
+    After following this course you will be able to:
+
+    - reproduce elementary formulas from the topics covered.
+    - solve mathematical problems encountered in the follow-up courses of the minor.
+    - explain Hilbert spaces of (in)finite dimension. 
+
+
+!!! note "Exercises"
+    Each lecture note comes with an extensive set of exercises, and each exercise is labeled according to its difficulty:
+
+    - [:grinning:] easy
+    - [:smirk:] intermediate
+    - [:sweat:] difficult
+
+With these notes, our aim is to provide learning materials which are:
+
+- self-contained
+- easy to modify and remix, so we provide the full source, including the code
+- open for reuse: see the license below.
+
+Whether you are a student taking this course, or an instructor reusing the materials, we welcome all contributions, so check out the [course repository](https://gitlab.kwant-project.org/mathematics-for-quantum-physics/lectures), especially do [let us know](https://gitlab.kwant-project.org/mathematics-for-quantum-physics/lectures/issues/new?issuable_template=typo) if you see a typo!
diff --git a/docs/scripts/mathjaxhelper.js b/docs/scripts/mathjaxhelper.js
new file mode 100644
index 0000000000000000000000000000000000000000..046845bf8bf4aef4784a49fd96b8ab60754a8a64
--- /dev/null
+++ b/docs/scripts/mathjaxhelper.js
@@ -0,0 +1,10 @@
+MathJax.Hub.Config({
+  config: ["MMLorHTML.js"],
+  jax: ["input/TeX", "output/HTML-CSS", "output/NativeMML"],
+  tex2jax: {
+    inlineMath: [ ['$','$'] ],
+    processEscapes: true
+  },
+  extensions: ["MathMenu.js", "MathZoom.js"]
+});
+
diff --git a/docs/styles/thebelab.css b/docs/styles/thebelab.css
new file mode 100644
index 0000000000000000000000000000000000000000..a437162dc2d35a08174075aca58b3ffdf82bbadd
--- /dev/null
+++ b/docs/styles/thebelab.css
@@ -0,0 +1,50 @@
+.thebelab-cell .thebelab-input pre {
+    z-index: 0;
+}
+
+.thebelab-code, .thebelab-init-code {
+    display: none;
+}
+
+.thebelab-button {
+    position: relative;
+    display: inline-block;
+    box-sizing: border-box;
+    border: none;
+    border-radius: .1rem;
+    padding: 0 2rem;
+    margin: .5rem .1rem;
+    min-width: 64px;
+    height: 1.6rem;
+    vertical-align: middle;
+    text-align: center;
+    font-size: 0.8rem;
+    color: rgba(0, 0, 0, 0.8);
+    background-color: rgba(0, 0, 0, 0.07);
+    overflow: hidden;
+    outline: none;
+    cursor: pointer;
+    transition: background-color 0.2s;
+}
+
+.thebelab-button:hover {
+    background-color: rgba(0, 0, 0, 0.12);
+}
+
+.thebelab-button:active {
+    background-color: rgba(0, 0, 0, 0.15);
+    color: rgba(0, 0, 0, 1)
+}
+
+#thebelab-activate-button {
+    font-size: 1rem;
+    margin-left: 0.4rem;
+}
+
+#thebelab-activate-button.thebelab-active {
+    color: rgb(83, 109, 254);
+}
+
+.thebelab-button.thebelab-restart-button {
+    display: none;
+}
diff --git a/mkdocs.yml b/mkdocs.yml
new file mode 100644
index 0000000000000000000000000000000000000000..7b256f8099e0d4154e865142c69d5d52a7240d46
--- /dev/null
+++ b/mkdocs.yml
@@ -0,0 +1,61 @@
+### Site metadata ###
+
+site_name: Mathematics for Quantum Physics
+site_description: Lecture notes for the TU Delft course TN3105 - Mathematics for Quantum Physics
+repo_url: https://gitlab.kwant-project.org/mathematics-for-quantum-physics/lectures
+edit_uri: edit/master/src/
+repo_name: Source
+
+### Build settings ###
+
+theme:
+  name: material
+  palette:
+   primary: 'white'
+   accent: 'indigo'
+  features:
+    - navigation.instant
+    - navigation.tracking
+    - search.highlight
+    - search.share
+    - toc.follow
+  icon:
+    repo: fontawesome/brands/gitlab
+
+nav:
+  - Introduction: 'index.md'
+  - 1. Complex numbers: '1_complex_numbers.md'
+  - 2. Coordinate systems: '2_coordinates.md'
+  - 3. Vector spaces: '3_vector_spaces.md'
+  - 4. Vector spaces in quantum mechanics: '4_vector_spaces_QM.md'
+  - 5. Operators in quantum mechanics: '5_operators_QM.md'
+  - 6. Eigenvectors and eigenvalues: '6_eigenvectors_QM.md'
+  - 7. Differential equations 1: '7_differential_equations_1.md'
+  - 8. Differential equations 2: '8_differential_equations_2.md'
+
+markdown_extensions:
+  - mdx_math:
+      enable_dollar_delimiter: True
+  - attr_list
+  - md_in_html  
+  - admonition
+  - pymdownx.details
+  - pymdownx.extra
+  - meta
+  - abbr
+  - pymdownx.emoji
+  - footnotes
+  - toc:
+      permalink: True
+      toc_depth: 3
+      
+
+
+extra_css:
+  - 'https://use.fontawesome.com/releases/v5.8.1/css/all.css'
+
+extra_javascript:
+  - 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=TeX-AMS_HTML'
+  - 'scripts/mathjaxhelper.js'
+
+copyright: "Copyright © 2019-2022 Delft University of Technology, CC-BY-SA 4.0."