diff --git a/src/8_differential_equations_2.md b/src/8_differential_equations_2.md
index 9512dabd3f893c552d139cf2f3ac60a0429506e5..3309480fad8c800ebd7c18f3388822094dc05d09 100644
--- a/src/8_differential_equations_2.md
+++ b/src/8_differential_equations_2.md
@@ -56,11 +56,11 @@ $$y_{1} = y, \ y_{2} = y', \ \cdots, \ y_{n} = y^{(n-1)}.$$
 Then, the differential equation can be re-written as
 
 $$\begin{split}
-y_1 ' = & y_2 \\
-y_2 ' = & y_3 \\
-\vdots & \\
-y_{n-1} ' = & y_{n} \\
-y_{n} ' = & - a_{0} y_{1} - a_{1} y_{2} - \cdots - a_{n-1} y_{n}.
+y_1 ' & = & y_2 \\
+y_2 ' & = & y_3 \\
+& \vdots & \\
+y_{n-1} '& = & y_{n} \\
+y_{n} ' & = & - a_{0} y_{1} - a_{1} y_{2} - \cdots - a_{n-1} y_{n}.
 \end{split}$$
 
 Notice that together these $n$ equations form a linear first order system, the