From 62cf45a5551e40ff35336a889f500ef227db009a Mon Sep 17 00:00:00 2001 From: Michael Wimmer <m.t.wimmer@tudelft.nl> Date: Tue, 15 Sep 2020 21:56:27 +0200 Subject: [PATCH] move proof to info box --- src/8_differential_equations_2.md | 80 ++++++++++++++++--------------- 1 file changed, 42 insertions(+), 38 deletions(-) diff --git a/src/8_differential_equations_2.md b/src/8_differential_equations_2.md index 3db758c..a3e1fff 100644 --- a/src/8_differential_equations_2.md +++ b/src/8_differential_equations_2.md @@ -104,40 +104,44 @@ in which $P(\lambda)$ is the characteristic polynomial of the system matrix $A$, $$P(\lambda) = \lambda^n + a_{n-1} \lambda^{n-1} + \cdots + a_0.$$ -As we demonstrate below, the proof relies on the co-factor expansion technique -for calculating a determinant. -$$- \det(A - \lambda I) = \begin{bmatrix} -\lambda & -1 & 0 & \cdots & 0 \\ -0 & \lambda & -1 & \cdots & 0 \\ -\vdots & \vdots & \vdots & \cdots & \vdots \\ -a_0 & a_1 & a_2 & \cdots & a_{n-1} + \lambda \\ -\end{bmatrix} $$ -$$- \det(A - \lambda I) = \lambda \det \begin{bmatrix} -\lambda & -1 & 0 & \cdots & 0 \\ -0 & \lambda & -1 & \cdots & 0 \\ -\vdots & \vdots & \vdots & \cdots & \vdots \\ -a_1 & a_2 & a_3 & \cdots & a_{n-1} + \lambda \\ -\end{bmatrix} + (-1)^{n+1}a_0 \det \begin{bmatrix} --1 & 0 & 0 & \cdots & 0 \\ -\lambda & -1 & 0 & cdots & 0 \\ -\vdots & \vdots & \vdots & \cdots & \vdots \\ -0 & 0 & \cdots & \lambda & -1 \\ -\end{bmatrix}$$ -$$- \det(A - \lambda I) = \lambda \det \begin{bmatrix} -\lambda & -1 & 0 & \cdots & 0 \\ -0 & \lambda & -1 & \cdots & 0 \\ -\vdots & \vdots & \vdots & \cdots & \vdots \\ -a_1 & a_2 & a_3 & \cdots & a_{n-1} + \lambda \\ -\end{bmatrix} + (-1)^{n+1} a_0 (-1)^{n-1}$$ -$$- \det(A - \lambda I) = \lambda \det \begin{bmatrix} -\lambda & -1 & 0 & \cdots & 0 \\ -0 & \lambda & -1 & \cdots & 0 \\ -\vdots & \vdots & \vdots & \cdots & \vdots \\ -a_1 & a_2 & a_3 & \cdots & a_{n-1} + \lambda \\ -\end{bmatrix} + a_0$$ -$$- \det(A - \lambda I) = \lambda (\lambda (\lambda \cdots + a_2) + a_1) + a_0$$ -$$- \det(A - \lambda I) = P(\lambda).$$ +!!! info "Proof of $\det(A - \lambda I) = -P(\lambda)$" + + As we demonstrate below, the proof relies on the co-factor expansion + technique for calculating a determinant. + + $$- \det(A - \lambda I) = \begin{bmatrix} + \lambda & -1 & 0 & \cdots & 0 \\ + 0 & \lambda & -1 & \cdots & 0 \\ + \vdots & \vdots & \vdots & \cdots & \vdots \\ + a_0 & a_1 & a_2 & \cdots & a_{n-1} + \lambda \\ + \end{bmatrix} $$ + $$- \det(A - \lambda I) = \lambda \det \begin{bmatrix} + \lambda & -1 & 0 & \cdots & 0 \\ + 0 & \lambda & -1 & \cdots & 0 \\ + \vdots & \vdots & \vdots & \cdots & \vdots \\ + a_1 & a_2 & a_3 & \cdots & a_{n-1} + \lambda \\ + \end{bmatrix} + (-1)^{n+1}a_0 \det \begin{bmatrix} + -1 & 0 & 0 & \cdots & 0 \\ + \lambda & -1 & 0 & \cdots & 0 \\ + \vdots & \vdots & \vdots & \cdots & \vdots \\ + 0 & 0 & \cdots & \lambda & -1 \\ + \end{bmatrix}$$ + $$- \det(A - \lambda I) = \lambda \det \begin{bmatrix} + \lambda & -1 & 0 & \cdots & 0 \\ + 0 & \lambda & -1 & \cdots & 0 \\ + \vdots & \vdots & \vdots & \cdots & \vdots \\ + a_1 & a_2 & a_3 & \cdots & a_{n-1} + \lambda \\ + \end{bmatrix} + (-1)^{n+1} a_0 (-1)^{n-1}$$ + $$- \det(A - \lambda I) = \lambda \det \begin{bmatrix} + \lambda & -1 & 0 & \cdots & 0 \\ + 0 & \lambda & -1 & \cdots & 0 \\ + \vdots & \vdots & \vdots & \cdots & \vdots \\ + a_1 & a_2 & a_3 & \cdots & a_{n-1} + \lambda \\ + \end{bmatrix} + a_0$$ + $$- \det(A - \lambda I) = \lambda (\lambda (\lambda \cdots + a_2) + a_1) + + a_0$$ + $$- \det(A - \lambda I) = P(\lambda).$$ In the second last line of the proof we indicated that the method of co-factor expansion demonstrated is repeated an additional $n-2$ times. This completes the @@ -434,7 +438,7 @@ This equation looks exactly like, and turns out to be, an eigenvalue equation! Recall that a space of functions can be transformed into a Hilbert space by equipping it with a inner product, - $$\langle f, g \rangle = \int^{L}_{0} dx f*(x) g(x) $$ + $$\langle f, g \rangle = \int^{L}_{0} dx f^*(x) g(x) $$ Use of this inner product also has utility in demonstrating that particular operators are *Hermitian*. The term hermitian is precisely defined below. @@ -455,16 +459,16 @@ Hilbert space). Denote this Hilbert space $\mathcal{H}_{0}$ and consider let $f, \ g \ \epsilon \ \mathcal{H}_0$ denote two functions from the Hilbert space. Then, we can investigate -$$\langle f, L g \rangle = \frac{- \hbar^2}{2m} \int^{L}_{0} dx f*(x) \frac{d^2}{dx^2}g(x).$$ +$$\langle f, L g \rangle = \frac{- \hbar^2}{2m} \int^{L}_{0} dx f^*(x) \frac{d^2}{dx^2}g(x).$$ As a first step, it is possible to do integration by parts in the integral, -$$\langle f, L g \rangle = \frac{+ \hbar^2}{2m} ( \int^{L}_{0} dx \frac{d f*}{dx} \frac{d g}{dx} - [f*(x)\frac{d g}{dx}] \big{|}^{L}_{0} )$$ +$$\langle f, L g \rangle = \frac{+ \hbar^2}{2m} ( \int^{L}_{0} dx \frac{d f^*}{dx} \frac{d g}{dx} - [f^*(x)\frac{d g}{dx}] \big{|}^{L}_{0} )$$ The boundary term vansishes, due to the boundary conditions $f(0)=f(L)=0$, -which directly imply $f*(0)=f*(L)=0$. Now, intergrate by parts a second time +which directly imply $f^*(0)=f^*(L)=0$. Now, intergrate by parts a second time -$$\langle f, L g \rangle = \frac{- \hbar^2}{2m} (\int^{L}_{0} dx \frac{d^2 f*}{dx^2} g(x) - [\frac{d f*}{dx} g(x)] \big{|}^{L}_{0} ).$$ +$$\langle f, L g \rangle = \frac{- \hbar^2}{2m} (\int^{L}_{0} dx \frac{d^2 f^*}{dx^2} g(x) - [\frac{d f^*}{dx} g(x)] \big{|}^{L}_{0} ).$$ As before, the boundary term vanishes, due to the boundary conditions $g(0)=g(L)=0$. Upon cancelling the boundary term however, the expression on -- GitLab