From 9194e206152ff13b88cd71fd95741b8fa6e901b6 Mon Sep 17 00:00:00 2001 From: Scarlett Gauthier <s.s.gauthier@student.tudelft.nl> Date: Fri, 28 Aug 2020 09:27:36 +0000 Subject: [PATCH] Finish adding questions for DE1 --- src/differential_equations_1.md | 79 +++++++++++++++++++++++++++++++++ 1 file changed, 79 insertions(+) diff --git a/src/differential_equations_1.md b/src/differential_equations_1.md index f563d07..f362048 100644 --- a/src/differential_equations_1.md +++ b/src/differential_equations_1.md @@ -806,6 +806,85 @@ since we have demonstrated that $**\phi**_{k}(t)$ is a solution of the DE. (c) $$x^{(2)}_1 x_1 + \dot{x}_1 = 8 x_2$$ $$\dot{x}_2=5tx_2 + x_1$$ +5. [:grinning:] Take the system of equations + + $$\dot{x}_1 = \frac{1}{2} (t-2)x_1 + \frac{1}{2} (t+1)x_2$$ + + $$\dot{x}_2 = \frac{1}{2}(t+1)x_1 + \frac{1}{2}(t-2)x_2.$$ + + Show that + + $**\Phi**_1(t) = \begin{bmatrix} + e^{- \frac{3}{2} t} \\ + -e^{- \frac{3}{2} t} \\ + \end{bmatrix}$ and $**\Phi**_2(t)=\begin{bmatrix} + e^{\frac{1}{2}(t^2-t)} \\ + e^{\frac{1}{2}(t^2-t)} \\ + \end{bmatrix}$ + + constitute a basis for the solution space of this system of equations. + To this end, first verify that they are indeed solutions and then that + they form a basis. + +6. [:grinning:] Take the system of equations + + $$\dot{x}_1=x_2$$ + + $$\dot{x}_2=x_2.$$ + + Re-write this system of equations into the general form + + $$\dot{**x**} = **A** **x**$$ + + and then find the general solution. Specify the general solution for the + following initial conditions + + (a) $**x**(0) = \begin{bmatrix} + 1 \\ + 0 \\ + \end{bmatrix}$ + + (b) $**x**(0) = \begin{bmatrix} + 0 \\ + 1 \\ + \end{bmatrix}$ + +7. [:smirk:] Find the general solution of + + $$\begin{bmatrix} + \dot{x}_1 \\ + \dot{x}_2 \\ + \dot{x}_3 \\ + \end{bmatrix} = \begin{bmatrix} + 2 & 0 & 2 \\ + 0 & 2 & 0 \\ + 1 & 0 & 3 \\ + \end{bmatrix} \begin{bmatrix} + x_1 \\ + x_2 \\ + x_3 \\ + \end{bmatrix}.$$ + + Then, specify the solution for the initial conditions + + (a) $\begin{bmatrix} + 0 \\ + 0 \\ + 1 \\ + \end{bmatrix}$ + + (b) $\begin{bmatrix} + 1 \\ + 0 \\ + 0 \\ + \end{bmatrix}$ + +8. [:sweat:] *Bonus question - A question of this kind will not be on the exam* + + Show that $e^{**A** t} e^{-**A** t} = \mathbbm{1}$, where $**A**$ is an + $n \times n$ matrix and $\mathbbm{1}$ is the $n \times n$ identity matrix, + by using the definition of the matrix exponential in terms of the Taylor series! + -- GitLab