From 9194e206152ff13b88cd71fd95741b8fa6e901b6 Mon Sep 17 00:00:00 2001
From: Scarlett Gauthier <s.s.gauthier@student.tudelft.nl>
Date: Fri, 28 Aug 2020 09:27:36 +0000
Subject: [PATCH] Finish adding questions for DE1

---
 src/differential_equations_1.md | 79 +++++++++++++++++++++++++++++++++
 1 file changed, 79 insertions(+)

diff --git a/src/differential_equations_1.md b/src/differential_equations_1.md
index f563d07..f362048 100644
--- a/src/differential_equations_1.md
+++ b/src/differential_equations_1.md
@@ -806,6 +806,85 @@ since we have demonstrated that $**\phi**_{k}(t)$ is a solution of the DE.
         (c) $$x^{(2)}_1 x_1 + \dot{x}_1 = 8 x_2$$
             $$\dot{x}_2=5tx_2 + x_1$$
 
+5. [:grinning:] Take the system of equations
+
+        $$\dot{x}_1 = \frac{1}{2} (t-2)x_1 + \frac{1}{2} (t+1)x_2$$
+
+        $$\dot{x}_2 = \frac{1}{2}(t+1)x_1 + \frac{1}{2}(t-2)x_2.$$
+
+        Show that 
+
+        $**\Phi**_1(t) = \begin{bmatrix} 
+        e^{- \frac{3}{2} t} \\
+        -e^{- \frac{3}{2} t} \\
+        \end{bmatrix}$ and $**\Phi**_2(t)=\begin{bmatrix}
+        e^{\frac{1}{2}(t^2-t)} \\
+        e^{\frac{1}{2}(t^2-t)} \\
+        \end{bmatrix}$
+
+        constitute a basis for the solution space of this system of equations. 
+        To this end, first verify that they are indeed solutions and then that 
+        they form a basis. 
+
+6. [:grinning:] Take the system of equations 
+
+        $$\dot{x}_1=x_2$$
+
+        $$\dot{x}_2=x_2.$$
+
+        Re-write this system of equations into the general form
+
+        $$\dot{**x**} = **A** **x**$$
+
+        and then find the general solution. Specify the general solution for the 
+        following initial conditions
+
+        (a) $**x**(0) = \begin{bmatrix} 
+        1 \\
+        0 \\
+        \end{bmatrix}$
+
+        (b) $**x**(0) = \begin{bmatrix}
+        0 \\
+        1 \\ 
+        \end{bmatrix}$
+
+7. [:smirk:] Find the general solution of 
+
+        $$\begin{bmatrix}
+        \dot{x}_1 \\
+        \dot{x}_2 \\
+        \dot{x}_3 \\
+        \end{bmatrix} = \begin{bmatrix} 
+        2 & 0 & 2 \\
+        0 & 2 & 0 \\
+        1 & 0 & 3 \\
+        \end{bmatrix} \begin{bmatrix} 
+        x_1 \\
+        x_2 \\
+        x_3 \\
+        \end{bmatrix}.$$
+
+        Then, specify the solution for the initial conditions 
+
+        (a) $\begin{bmatrix} 
+        0 \\
+        0 \\
+        1 \\
+        \end{bmatrix}$
+
+        (b) $\begin{bmatrix}
+        1 \\
+        0 \\
+        0 \\
+        \end{bmatrix}$
+
+8.  [:sweat:] *Bonus question - A question of this kind will not be on the exam*
+
+        Show that $e^{**A** t} e^{-**A** t} = \mathbbm{1}$, where $**A**$ is an 
+        $n \times n$ matrix and $\mathbbm{1}$ is the $n \times n$ identity matrix,
+        by using the definition of the matrix exponential in terms of the Taylor series!
+
 
 
 
-- 
GitLab