diff --git a/src/8_differential_equations_2.md b/src/8_differential_equations_2.md index 4408ccc81fbec7ca587a15ff59766e224d6bcb0b..3db758c4bd08688beed185987ab3dded1abe7ac9 100644 --- a/src/8_differential_equations_2.md +++ b/src/8_differential_equations_2.md @@ -76,7 +76,7 @@ $$y(x) = c_1 f_1 (x) + c_2 f_2 (x) + \cdots + c_n f_{n}(x). $$ To check that the $n$ solutions form a basis, it is sufficient to verify -$$ det \begin{bmatrix} +$$ \det \begin{bmatrix} f_1(x) & \cdots & f_{n}(x) \\ f_1 ' (x) & \cdots & f_{n}'(x) \\ \vdots & \vdots & \vdots \\ @@ -98,7 +98,7 @@ $$A = \begin{bmatrix} It is possible to show that -$$det(A - \lambda I) = -P(\lambda),$$ +$$\det(A - \lambda I) = -P(\lambda),$$ in which $P(\lambda)$ is the characteristic polynomial of the system matrix $A$, @@ -107,37 +107,37 @@ $$P(\lambda) = \lambda^n + a_{n-1} \lambda^{n-1} + \cdots + a_0.$$ As we demonstrate below, the proof relies on the co-factor expansion technique for calculating a determinant. -$$- det(A - \lambda I) = \begin{bmatrix} +$$- \det(A - \lambda I) = \begin{bmatrix} \lambda & -1 & 0 & \cdots & 0 \\ 0 & \lambda & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ a_0 & a_1 & a_2 & \cdots & a_{n-1} + \lambda \\ \end{bmatrix} $$ -$$- det(A - \lambda I) = \lambda det \begin{bmatrix} +$$- \det(A - \lambda I) = \lambda \det \begin{bmatrix} \lambda & -1 & 0 & \cdots & 0 \\ 0 & \lambda & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ a_1 & a_2 & a_3 & \cdots & a_{n-1} + \lambda \\ -\end{bmatrix} + (-1)^{n+1}a_0 det \begin{bmatrix} +\end{bmatrix} + (-1)^{n+1}a_0 \det \begin{bmatrix} -1 & 0 & 0 & \cdots & 0 \\ \lambda & -1 & 0 & cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \lambda & -1 \\ \end{bmatrix}$$ -$$- det(A - \lambda I) = \lambda det \begin{bmatrix} +$$- \det(A - \lambda I) = \lambda \det \begin{bmatrix} \lambda & -1 & 0 & \cdots & 0 \\ 0 & \lambda & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ a_1 & a_2 & a_3 & \cdots & a_{n-1} + \lambda \\ \end{bmatrix} + (-1)^{n+1} a_0 (-1)^{n-1}$$ -$$- det(A - \lambda I) = \lambda det \begin{bmatrix} +$$- \det(A - \lambda I) = \lambda \det \begin{bmatrix} \lambda & -1 & 0 & \cdots & 0 \\ 0 & \lambda & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ a_1 & a_2 & a_3 & \cdots & a_{n-1} + \lambda \\ \end{bmatrix} + a_0$$ -$$- det(A - \lambda I) = \lambda (\lambda (\lambda \cdots + a_2) + a_1) + a_0$$ -$$- det(A - \lambda I) = P(\lambda).$$ +$$- \det(A - \lambda I) = \lambda (\lambda (\lambda \cdots + a_2) + a_1) + a_0$$ +$$- \det(A - \lambda I) = P(\lambda).$$ In the second last line of the proof we indicated that the method of co-factor expansion demonstrated is repeated an additional $n-2$ times. This completes the @@ -198,7 +198,7 @@ $$f(x) = e^{\lambda_1 x}, \ x e^{\lambda_1 x} , \ \cdots, \ x^{m_{1}-1} e^{\lamb since they are linear combinations of $f_1$ and $f_2$ which remain linearly independent, - $$\tilde{f_1}(x)=cos(kx), \tilde{f_2}(x)=sin{kx}.$$ + $$\tilde{f_1}(x)=\cos(kx), \tilde{f_2}(x)=sin{kx}.$$ **Case 2: $E<0$** This time, define $E=-k^2$, for constant $k$. The characteristic polynomial @@ -369,7 +369,7 @@ $$\phi''(x)+k^2 \phi(x)=0.$$ Two linearly independent solutions to this equation are -$$\phi_{1}(x)=sin(k x), \ \phi_{2}(x) = cos(k x).$$ +$$\phi_{1}(x)=\sin(k x), \ \phi_{2}(x) = \cos(k x).$$ The solution to this homogeneous equation is then @@ -378,11 +378,11 @@ $$\phi(x)=c_1 \phi_1(x)+c_2 \phi_2(x).$$ The eigenvalue, $\lambda$ as well as one of the constant coefficients can be determined using the boundary conditions. -$$\phi(0)=0 \ \Rightarrow \ \phi(x)=c_1 sin(k x), \ c_2=0.$$ +$$\phi(0)=0 \ \Rightarrow \ \phi(x)=c_1 \sin(k x), \ c_2=0.$$ -$$\phi(L)=0 \ \Rightarrow \ 0=c_1 sin(k L) .$$ +$$\phi(L)=0 \ \Rightarrow \ 0=c_1 \sin(k L) .$$ -In turn, using the properties of the $sin(\cdot)$ function, it is now possible +In turn, using the properties of the $\sin(\cdot)$ function, it is now possible to find the allowed values of $k$ and hence also $\lambda$. The previous equation implies, @@ -404,7 +404,7 @@ PDE was supplied with an initial condition. Putting the solutions to the two ODEs together and redefining $\tilde{A}=A \cdot c_1$, we arrive at the solutions for theb PDE, -$\psi_n(x,t) = \tilde{A}_n e^{-i \frac{\lambda_n t}{\hbar}} sin(\frac{n \pi x}{L}).$ +$\psi_n(x,t) = \tilde{A}_n e^{-i \frac{\lambda_n t}{\hbar}} \sin(\frac{n \pi x}{L}).$ Notice that there is one solution $\psi_{n}(x,t)$ for each natural number $n$. These are still very special solutions. We will begin discussing next how to @@ -488,18 +488,18 @@ the eigenfunctions of $L$. In terms of hermitian operators and their eigenfunctions, the eigenfunctions play the role of the orthonormal basis. In reference to our running example, the 1D Schrödinger equation of a free particle, the eigenfunctions - $sin(\frac{n \pi x}{L})$ play the role of the basis functions $\ket{u_n}$. + $\sin(\frac{n \pi x}{L})$ play the role of the basis functions $\ket{u_n}$. To close our running example, consider the initial condition -$\psi(x,o) = \psi_{0}(x)$. Since the eigenfunctions $sin(\frac{n \pi x}{L})$ +$\psi(x,o) = \psi_{0}(x)$. Since the eigenfunctions $\sin(\frac{n \pi x}{L})$ form a basis, we can now write the general solution to the problem as -$$\psi(x,t) = \overset{\infinity}{\underset{n}{\Sigma}} c_n e^{-i \frac{\lambda_n t}{\hbar}} sin(\frac{n \pi x}{L}),$$ +$$\psi(x,t) = \overset{\infinity}{\underset{n}{\Sigma}} c_n e^{-i \frac{\lambda_n t}{\hbar}} \sin(\frac{n \pi x}{L}),$$ where in the above we have defined the coefficients using the Fourier coefficient, -$$c_n:= \int^{L}_{0} dx sin(\frac{n \pi x}{L}) \psi_{0}(x). $$ +$$c_n:= \int^{L}_{0} dx \sin(\frac{n \pi x}{L}) \psi_{0}(x). $$ ### General recipie for seperable PDEs @@ -530,9 +530,9 @@ necessary to work with numerical methods of solution. 1. [:grinning:] Which of the following equations for $y(x)$ is linear? - (a) y''' - y'' + x cos(x) y' + y - 1 = 0 + (a) y''' - y'' + x \cos(x) y' + y - 1 = 0 - (b) y''' + 4 x y' - cos(x) y = 0 + (b) y''' + 4 x y' - \cos(x) y = 0 (c) y'' + y y' = 0