From c0b2d7b11aa1e1ce04d2187538da9f4f4d21c7d3 Mon Sep 17 00:00:00 2001
From: Michael Wimmer <m.t.wimmer@tudelft.nl>
Date: Sun, 13 Sep 2020 22:06:18 +0200
Subject: [PATCH] remove explicit conversion to linear system

---
 src/8_differential_equations_2.md | 23 -----------------------
 1 file changed, 23 deletions(-)

diff --git a/src/8_differential_equations_2.md b/src/8_differential_equations_2.md
index b8601b0..5286847 100644
--- a/src/8_differential_equations_2.md
+++ b/src/8_differential_equations_2.md
@@ -153,29 +153,6 @@ $$f(x) = e^{\lambda_1 x}, \ x e^{\lambda_1 x} , \ \cdots, \ x^{m_{1}-1} e^{\lamb
     
     $$y'' + Ey = 0.$$ 
     
-    Let us reduce this second order equation to a system of two first order 
-    equations. Define
-    
-    $$y_1=y$$
-    $$y_2=y'.$$
-    
-    Writing $**y**= \begin{bmatrix} 
-    y_1 \\
-    y_2 \\ 
-    \end{bmatrix}$, the DE can be written,
-    
-    $$\dot{**y**} = \begin{bmatrix} 
-    y_2 \\
-    -E y_1 \\
-    \end{bmatrix}$$
-    $$\dot{**y**} = \begin{bmatrix} 
-    0 & 1 \\
-    -E & 0 \\
-    \end{bmatrix} \begin{bmatrix} 
-    y_1 \\
-    y_2 \\
-    \end{bmatrix}.$$
-    
     The characteristic polynomial of this equation is 
     
     $$P(\lambda) = \lambda^2 + E.$$
-- 
GitLab