From cfca3fc182c03cef3c3ab8dd7b5c858295d27b12 Mon Sep 17 00:00:00 2001 From: Maciej Topyla <m.m.topyla@student.tudelft.nl> Date: Sun, 4 Sep 2022 20:24:52 +0000 Subject: [PATCH] Formatting problems sections --- src/1_complex_numbers.md | 57 ++++++++++++++++++++++++---------------- 1 file changed, 34 insertions(+), 23 deletions(-) diff --git a/src/1_complex_numbers.md b/src/1_complex_numbers.md index ea01b4f..7bee6c8 100644 --- a/src/1_complex_numbers.md +++ b/src/1_complex_numbers.md @@ -288,26 +288,37 @@ function help in re-deriving trigonometric identities. ## 1.6. Problems 1. [:grinning:] Given $a=1+2\rm i$ and $b=-3+4\rm i$, calculate and draw in the - complex plane the numbers $a+b$, $ab$, and $b/a$. - -2. [:grinning:] Evaluate (a) $\rm i^{1/4}$, (b) - $\left(1+\rm i \sqrt{3}\right)^{1/2}$, (c) $\exp(2\rm i^3)$. - -3. [:grinning:] Find the three 3rd roots of $1$ and ${\rm i}$ (i.e. all possible solutions to the equations $x^3 = 1$ and $x^3 = {\rm i}$, respectively). - -4. [:grinning:] (a) Find the real and imaginary part of - $$ \frac{1+ {\rm i}}{2+3{\rm i}}$$ - (b) Evaluate $$\left| \frac{a+b\rm i}{a-b\rm i} \right|$$ - for real $a$ and $b$. - -5. [:sweat:] For any given complex number $z$, we can take the inverse $\frac{1}{z}$. Visualize taking the inverse in the complex plane. What geometric operation does taking the inverse correspond to? (Hint: first consider what geometric operation $\frac{1}{z^*}$ corresponds to.) - -6. [:grinning:] Compute (a) - $$\frac{d}{dt} e^{{\rm i} (kx-\omega t)},$$ - and (b) calculate the real part of - $$\int_0^\infty e^{-\gamma t +\rm i \omega t} dt$$($k$, $x$, $\omega$, $t$ and - $\gamma$ are real; $\gamma$ is positive). - -7. [:smirk:] Compute - $$\int_{0}^{\pi}\cos(x)\sin(2x)dx$$ - by making use of the Euler identity. + complex plane the numbers: + 1. $a+b$, + 2. $ab$, + 3. $b/a$. + +2. [:grinning:] Evaluate + (a) $\rm i^{1/4}$, + (b) $\left(1+\rm i \sqrt{3}\right)^{1/2}$, + (c) $\exp(2\rm i^3)$. + +3. [:grinning:] Find the three 3rd roots of $1$ and ${\rm i}$ ( + i.e. all possible solutions to the equations $x^3 = 1$ and $x^3 = {\rm i}$, respectively). + +4. [:grinning:] + (a) Find the real and imaginary part of + $$ \frac{1+ {\rm i}}{2+3{\rm i}}$$ + (b) Evaluate $$\left| \frac{a+b\rm i}{a-b\rm i} \right|$$ + for real $a$ and $b$. + +5. [:sweat:] + 1. For any given complex number $z$, we can take the inverse $\frac{1}{z}$. + 2. Visualize taking the inverse in the complex plane. + 3. What geometric operation does taking the inverse correspond to? + (Hint: first consider what geometric operation $\frac{1}{z^*}$ corresponds to.) + +6. [:grinning:] + (a) Compute $$\frac{d}{dt} e^{{\rm i} (kx-\omega t)},$$ + (b) calculate the real part of $$\int_0^\infty e^{-\gamma t +\rm i \omega t} dt$$ + ($k$, $x$, $\omega$, $t$ and $\gamma$ are real; $\gamma$ is positive). + +7. [:smirk:] + Compute + $$\int_{0}^{\pi}\cos(x)\sin(2x)dx$$ + by making use of the Euler identity. -- GitLab