From cfca3fc182c03cef3c3ab8dd7b5c858295d27b12 Mon Sep 17 00:00:00 2001
From: Maciej Topyla <m.m.topyla@student.tudelft.nl>
Date: Sun, 4 Sep 2022 20:24:52 +0000
Subject: [PATCH] Formatting problems sections

---
 src/1_complex_numbers.md | 57 ++++++++++++++++++++++++----------------
 1 file changed, 34 insertions(+), 23 deletions(-)

diff --git a/src/1_complex_numbers.md b/src/1_complex_numbers.md
index ea01b4f..7bee6c8 100644
--- a/src/1_complex_numbers.md
+++ b/src/1_complex_numbers.md
@@ -288,26 +288,37 @@ function help in re-deriving trigonometric identities.
 ## 1.6. Problems
 
 1.  [:grinning:]  Given $a=1+2\rm i$ and $b=-3+4\rm i$, calculate and draw in the
-    complex plane the numbers $a+b$, $ab$, and $b/a$.
-
-2.  [:grinning:] Evaluate (a) $\rm i^{1/4}$, (b)
-    $\left(1+\rm i \sqrt{3}\right)^{1/2}$, (c) $\exp(2\rm i^3)$.
-
-3.  [:grinning:] Find the three 3rd roots of $1$ and ${\rm i}$ (i.e. all possible solutions to the equations $x^3 = 1$ and $x^3 = {\rm i}$, respectively).
-
-4.  [:grinning:] (a) Find the real and imaginary part of 
-    $$ \frac{1+ {\rm i}}{2+3{\rm i}}$$
-    (b) Evaluate $$\left| \frac{a+b\rm i}{a-b\rm i} \right|$$
-    for real $a$ and $b$.
-
-5.  [:sweat:] For any given complex number $z$, we can take the inverse $\frac{1}{z}$. Visualize taking the inverse in the complex plane. What geometric operation does taking the inverse correspond to? (Hint: first consider what geometric operation $\frac{1}{z^*}$ corresponds to.)
-
-6.  [:grinning:] Compute (a) 
-    $$\frac{d}{dt} e^{{\rm i} (kx-\omega t)},$$
-    and (b) calculate the real part of
-    $$\int_0^\infty e^{-\gamma t  +\rm i \omega t} dt$$($k$, $x$, $\omega$, $t$ and
-    $\gamma$ are real; $\gamma$ is positive).
-
-7.  [:smirk:] Compute
-    $$\int_{0}^{\pi}\cos(x)\sin(2x)dx$$
-    by making use of the Euler identity.
+    complex plane the numbers:
+        1.  $a+b$, 
+        2.  $ab$,
+        3.  $b/a$.
+
+2.  [:grinning:] Evaluate 
+        (a) $\rm i^{1/4}$, 
+        (b) $\left(1+\rm i \sqrt{3}\right)^{1/2}$,
+        (c) $\exp(2\rm i^3)$.
+
+3.  [:grinning:] Find the three 3rd roots of $1$ and ${\rm i}$ (
+        i.e. all possible solutions to the equations $x^3 = 1$ and $x^3 = {\rm i}$, respectively).
+
+4.  [:grinning:] 
+        (a) Find the real and imaginary part of 
+        $$ \frac{1+ {\rm i}}{2+3{\rm i}}$$
+        (b) Evaluate $$\left| \frac{a+b\rm i}{a-b\rm i} \right|$$ 
+        for real $a$ and $b$.
+
+5.  [:sweat:] 
+        1.  For any given complex number $z$, we can take the inverse $\frac{1}{z}$. 
+        2.  Visualize taking the inverse in the complex plane. 
+        3.  What geometric operation does taking the inverse correspond to? 
+            (Hint: first consider what geometric operation $\frac{1}{z^*}$ corresponds to.)
+
+6.  [:grinning:]  
+        (a) Compute $$\frac{d}{dt} e^{{\rm i} (kx-\omega t)},$$
+        (b) calculate the real part of $$\int_0^\infty e^{-\gamma t  +\rm i \omega t} dt$$ 
+            ($k$, $x$, $\omega$, $t$ and $\gamma$ are real; $\gamma$ is positive).
+
+7.  [:smirk:] 
+        Compute 
+        $$\int_{0}^{\pi}\cos(x)\sin(2x)dx$$
+        by making use of the Euler identity.
-- 
GitLab