diff --git a/src/1_complex_numbers.md b/src/1_complex_numbers.md index 3351552810b1eac582afee1a7d417090e7b62c9d..f24ee1e2ce0de1f22f08eefc97964d491884bfff 100644 --- a/src/1_complex_numbers.md +++ b/src/1_complex_numbers.md @@ -2,8 +2,9 @@ title: Complex Numbers --- -Complex numbers -=============== +# Complex numbers + +## Definition and basic operations Complex numbers are numbers of the form $$z = a + b {\rm i}.$$ Here $\rm i$ is the square root of -1: $${\rm i} = \sqrt{-1},$$ or, @@ -21,8 +22,8 @@ Some definitions: $$z^* = a - b{{\rm i}},$$ i.e., taking the complex conjugate means flipping the sign of the imaginary part. -Addition --------- +### Addition + For two complex numbers, $z_1 = a_1 + b_1 {{\rm i}}$ and $z_2 = a_2 + b_2 {{\rm i}}$, the sum $w = z_1 + z_2$ is given as @@ -35,8 +36,8 @@ in twice the real part of $z$. Similarly, subtracting $z^*$ from $z$ yields $$z - z^* = a + b {{\rm i}} - a + b {{\rm i}}= 2b{\rm i},$$ i.e., twice the imaginary part of $z$ (times $\rm i$). -Multiplication --------------- +### Multiplication + For the same two complex numbers $z_1$ and $z_2$ as above, their product is calculated as @@ -50,8 +51,7 @@ $$z z^* = (a+b{{\rm i}})(a-b{{\rm i}}) = a^2 + b^2.$$ The square root of this number is the *norm* $|z|$ of $z$: $$|z| = \sqrt{z z^*} = \sqrt{a^2 + b^2}.$$ -Division --------- +### Division The quotient $z_1/z_2$ of two complex numbers $z_1$ and $z_2$ as above, can be evaluated by multiplying the numerator and denominator by the @@ -59,8 +59,7 @@ complex conjugate of $z_2$: $$\frac{z_1}{z_2} = \frac{z_1 z_2^*}{z_2 z_2^*} = \frac{(a_1 a_2 + b_1 b_2) + (-a_1 b_2 + a_2 b_1) {{\rm i}}}{a_2^2 + b_2^2}.$$ Check this! -The complex plane -================= +## The complex plane Complex numbers can be rendered on a two-dimensional (2D) plane, the *complex plane*. This plane is spanned by two unit vectors, one @@ -71,8 +70,7 @@ unit vector represents ${\rm i}$. Note that the norm of $z$ is the length of this vector. -Addition in the complex plane ------------------------------ +### Addition in the complex plane Adding two numbers in the complex plane corresponds to adding the horizontal and vertical components: @@ -82,8 +80,8 @@ horizontal and vertical components: We see that the sum is found as the diagonal of a parallelogram spanned by the two numbers. -Argument and Norm ------------------ +### Argument and Norm + A complex number can be represented by two real numbers, $a$ and $b$ which represent the real and imaginary part of the complex number. An @@ -115,8 +113,7 @@ $$\varphi = \begin{cases} \arctan(b/a) &{\rm for ~} a>0; \\ -\pi + \arctan(b/a) &{\rm ~ for ~} a<0 {\rm ~ and ~} b<0. \end{cases}$$ -Complex functions ------------------ +## Complex functions A complex function $f$ maps any complex number $z$ onto another complex number $f(z)$. Just as with real functions, we can define the derivative @@ -184,8 +181,7 @@ $$f(z) = \sum_{j=0}^\infty d_j (z-a)^j,$$ where $$d_j = \frac{1}{j!} f^{(j)} (a).$$ Here, $f^{(j)}(a)$ denotes the $j$-th derivative of the function $f$ in the point $a$. -The complex exponential function --------------------------------- +## The complex exponential function The exponential function $f(z) = \exp(z) = e^z$ is defined as: $$\exp(z) = e^{x} \left( \cos y + {\rm i} \sin y\right).$$ @@ -248,8 +244,8 @@ function helps in re-deriving trigonometric identities. and imaginary parts leads to $$\cos'\varphi = - \sin\varphi;$$ $$\sin'\varphi = \cos\varphi.$$ -Hyperbolic functions --------------------- +## Hyperbolic functions + From $e^{\rm i \varphi} = \left( \cos\varphi + {\rm i} \sin\varphi\right)$, @@ -280,8 +276,8 @@ Finally, the hyperbolic tangent is defined as $$\tanh(x) = \frac{\sinh(x)}{\cosh(x)}.$$ Its derivative is given as $$\tanh'(x) = 1 + \frac{\sinh^2 x}{\cosh^2 (x)} = - \frac{1}{\cosh^2(x)}.$$ -Summary -======= +## Summary + - A complex number $z$ has the form $$z = a + b \rm i$$ where $a$ and $b$ are both real, and $\rm i^2 = 1$. The real number $a$ is called @@ -331,8 +327,7 @@ Summary $$\sinh(z) = \frac{e^{z} - e^{-z}}{2}; \phantom{xxx} \cosh(z) = \frac{e^{z} + e^{-z}}{2}.$$ -Problems -======== +## Problems 1. [:grinning:] Given $a=1+2\rm i$ and $b=4-2\rm i$, draw in the complex plane the numbers $a+b$, $a-b$, $ab$, $a/b$, $e^a$ and