Commit fc973fdd authored by Joseph Weston's avatar Joseph Weston
Browse files

add 'add_peierls_phase'

This function adds a Peierls phase to a Builder
parent ba8b6ea8
......@@ -13,6 +13,7 @@ import collections
import copy
from functools import total_ordering, wraps, update_wrapper
from itertools import islice, chain
import textwrap
import inspect
import tinyarray as ta
import numpy as np
......@@ -20,13 +21,14 @@ from scipy import sparse
from . import system, graph, KwantDeprecationWarning, UserCodeError
from .linalg import lll
from .operator import Density
from .physics import DiscreteSymmetry
from .physics import DiscreteSymmetry, magnetic_gauge
from ._common import (ensure_isinstance, get_parameters, reraise_warnings,
interleave, deprecate_args)
interleave, deprecate_args, memoize)
__all__ = ['Builder', 'Site', 'SiteFamily', 'SimpleSiteFamily', 'Symmetry',
'HoppingKind', 'Lead', 'BuilderLead', 'SelfEnergyLead', 'ModesLead']
'HoppingKind', 'Lead', 'BuilderLead', 'SelfEnergyLead', 'ModesLead',
################ Sites and site families
......@@ -1803,6 +1805,169 @@ class Builder:
inter_cell_hopping = cell_hamiltonian = precalculated = \
def _add_peierls_phase(syst, peierls_parameter):
def wrap_hopping(hop):
def f(*args):
a, b, *args, phi = args
return hop(a, b, *args) * phi(a, b)
params = ('_site0', '_site1')
if callable(hop):
params += get_parameters(hop)[2:] # cut off both site parameters
params += (peierls_parameter,)
f.__signature__ = inspect.Signature(
inspect.Parameter(name, inspect.Parameter.POSITIONAL_ONLY)
for name in params)
return f
const_hoppings = {}
def const_hopping(a, b, phi):
return const_hoppings[a, b] * phi(a, b)
# fix the signature
params = ('_site0', '_site1', peierls_parameter)
const_hopping.__signature__ = inspect.Signature(
inspect.Parameter(name, inspect.Parameter.POSITIONAL_ONLY)
for name in params)
ret = Builder(
# No time reversal, as magnetic fields break it
for i, lead in enumerate(syst.leads):
peierls_parameter + '_lead{}'.format(i),
for site, val in syst.site_value_pairs():
ret[site] = val
for hop, val in syst.hopping_value_pairs():
if callable(val):
ret[hop] = wrap_hopping(val)
const_hoppings[hop] = val
ret[hop] = const_hopping
return ret
def add_peierls_phase(syst, peierls_parameter='phi', fix_gauge=True):
"""Add a Peierls phase parameter to a Builder.
syst : kwant.Builder
The system to which to add a Peierls phase.
peierls_parameter : str
The name of the Peierls phase parameter to value functions.
fix_gauge : bool (default: True)
If True, fix the gauge of the system and return it also
syst : kwant.builder.Finitesystem or kwant.builder.InfiniteSystem
A system where all hoppings are given by value functions
that have an additional parameter 'phi' that should be
the Peierls phase returned by `kwant.physics.magnetic_gauge`.
Any leads have similar parameters named 'phi_lead0',
'phi_lead1' etc.
gauge : callable
Only returned if 'fix_gauge' is True. Called with magnetic
field(s), and returns a parameter dictionary that can be
passed to the system as 'params' (see the example below).
>>> import numpy as np
>>> import kwant
>>> syst = make_system()
>>> lead = make_lead()
>>> syst.attach_lead(lead)
>>> syst.attach_lead(lead.reversed())
>>> fsyst, phase = kwant.builder.add_peierls_phase(syst)
>>> def B_syst(pos):
>>> return np.exp(-np.sum(pos * pos))
>>> kwant.smatrix(fsyst, parameters=dict(t=-1, **phase(B_syst, 0, 0)))
def wrap_gauge(gauge):
phase_names = [peierls_parameter]
phase_names += [peierls_parameter + '_lead{}'.format(i)
for i in range(len(syst.leads))]
doc = textwrap.dedent("""\
Return the Peierls phase for a magnetic field configuration.
syst_field : scalar, vector or callable
The magnetic field to apply to the scattering region.
If callable, takes a position and returns the
magnetic field at that position. Can be a scalar if
the system is 1D or 2D, otherwise must be a vector.
Magnetic field is expressed in units :math:`φ₀ / l²`,
where :math:`φ₀` is the magnetic flux quantum and
:math:`l` is the unit of length.
*lead_fields : scalar, vector or callable
The magnetic fields to apply to each of the leads, in
the same format as 'syst_field'. In addition, if a callable
is provided, then the magnetic field must have the symmetry
of the associated lead.
tol : float, default: 1E-8
The tolerance to which to calculate the flux through each
hopping loop in the system.
average : bool, default: False
If True, estimate the magnetic flux through each hopping loop
in the system by evaluating the magnetic field at a single
position inside the loop and multiplying it by the area of the
loop. If False, then ``scipy.integrate.quad`` is used to integrate
the magnetic field. This parameter is only used when 'syst_field'
or 'lead_fields' are callable.
phases : dict of callables
To be passed directly as the parameters of a system wrapped with
def f(*args, **kwargs):
phases = gauge(*args, **kwargs)
return dict(zip(phase_names, phases))
f.__doc__ = doc
return f
ret = _add_peierls_phase(syst, peierls_parameter).finalized()
if fix_gauge:
return ret, wrap_gauge(magnetic_gauge(ret))
return ret
################ Finalized systems
......@@ -1416,3 +1416,28 @@ def test_finalization_preserves_padding():
syst = syst.finalized()
# The order is guaranteed because the paddings are sorted.
assert [syst.sites[i] for i in syst.lead_paddings[0]] == padding[:-1]
def test_add_peierls_phase():
lat = kwant.lattice.square()
syst = kwant.Builder()
syst[(lat(i, j) for i in range(5) for j in range(5))] = 4
syst[lat.neighbors()] = lambda a, b, t: -t
lead = kwant.Builder(kwant.TranslationalSymmetry((-1, 0)))
lead[(lat(0, j) for j in range(5))] = 4
lead[lat.neighbors()] = -1
syst, phase = builder.add_peierls_phase(syst)
assert isinstance(syst, builder.FiniteSystem)
params = phase(1, 0, 0)
assert all(p in params for p in ('phi', 'phi_lead0', 'phi_lead1'))
kwant.smatrix(syst, energy=0.1, params=dict(t=-1, **params))
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment