From 19c8df6b720e80b77cf769fa98703bc2a341f7b0 Mon Sep 17 00:00:00 2001 From: Bas Nijholt <basnijholt@gmail.com> Date: Wed, 25 Sep 2019 14:12:57 +0200 Subject: [PATCH] work on figures --- figures.ipynb | 35 +++++++++++++++++++---------------- phase_diagram.ipynb | 7 ++++--- 2 files changed, 23 insertions(+), 19 deletions(-) diff --git a/figures.ipynb b/figures.ipynb index 3fa61dd..0a19f1d 100644 --- a/figures.ipynb +++ b/figures.ipynb @@ -547,7 +547,7 @@ "from matplotlib.patches import Polygon\n", "\n", "fig, axs = plt.subplots(5, 1, figsize=(fig_width, 1.5 * fig_height))\n", - "f = lambda x: np.sin(x) ** 2\n", + "f = lambda x: np.sin(np.array(x)) ** 2\n", "xs = np.array([0, 1.3, 3, 5, 7, 8])\n", "ys = f(xs)\n", "\n", @@ -849,20 +849,22 @@ ")\n", "\n", "\n", - "def isoline_loss_function(y_iso, sigma, priority=1):\n", - " from adaptive.learner.learnerND import default_loss\n", - "\n", - " def gaussian(x, mu, sigma):\n", - " return np.exp(-(x - mu) ** 2 / sigma ** 2)\n", + "from adaptive.learner.learnerND import default_loss\n", "\n", - " def loss(simplex, ys):\n", - " distance = np.mean([abs(y_iso - y) for y in ys])\n", - " return priority * gaussian(distance, 0, sigma) + default_loss(simplex, ys)\n", + "def gaussian(x, mu, sigma):\n", + " return np.exp(-(x - mu)**2 / sigma**2 / 2)\n", "\n", + "def isoline_loss_function(level, sigma, priority):\n", + " def loss(simplex, values, value_scale):\n", + " values = np.array(values)\n", + " dist = abs(level * value_scale - values).mean()\n", + " L_default = default_loss(simplex, values, value_scale)\n", + " L_dist = priority * gaussian(dist, 0, sigma)\n", + " return L_dist + L_default\n", " return loss\n", "\n", - "\n", - "loss = isoline_loss_function(y_iso=0.1, sigma=1, priority=0.0)\n", + "level = 0.1\n", + "loss_per_simplex = isoline_loss_function(level, 0.4, 0.5)\n", "\n", "learners = []\n", "fnames = []\n", @@ -907,17 +909,18 @@ "npoints = 17 ** 2\n", "\n", "\n", - "def isoline_loss_function(y_iso, sigma, priority=1):\n", + "def isoline_loss_function(level, sigma, priority=1):\n", " from adaptive.learner.learnerND import default_loss\n", "\n", " def gaussian(x, mu, sigma):\n", " return np.exp(-(x - mu) ** 2 / sigma ** 2 / 2)\n", "\n", " def loss(simplex, values, value_scale):\n", - " distance = np.mean([abs(y_iso * value_scale - y) for y in values])\n", - " return priority * gaussian(distance, 0, sigma) + default_loss(\n", - " simplex, values, value_scale\n", - " )\n", + " values = np.array(values)\n", + " dist = abs(level * value_scale - values).mean()\n", + " L_default = default_loss(simplex, values, value_scale)\n", + " L_dist = priority * gaussian(dist, 0, sigma)\n", + " return L_dist + L_default\n", "\n", " return loss\n", "\n", diff --git a/phase_diagram.ipynb b/phase_diagram.ipynb index 1f0e82f..b304978 100644 --- a/phase_diagram.ipynb +++ b/phase_diagram.ipynb @@ -115,8 +115,9 @@ " return learner.npoints > 100_000\n", "\n", "scheduler = adaptive_scheduler.scheduler.PBS(\n", - " cores=13*10,\n", - " cores_per_node=10,\n", + " cores=10*20,\n", + " cores_per_node=20,\n", + " executor_type='ipyparallel',\n", ") # every learner get this many cores\n", "\n", "run_manager = adaptive_scheduler.server_support.RunManager(\n", @@ -124,7 +125,7 @@ " learners_file=\"learners_file.py\",\n", " goal=goal,\n", " log_interval=30,\n", - " save_interval=300,\n", + " save_interval=120,\n", ")\n", "run_manager.start()\n" ] -- GitLab