From 1bf95765e31325763af51162d7c04929d85c1334 Mon Sep 17 00:00:00 2001 From: Bas Nijholt <basnijholt@gmail.com> Date: Wed, 2 Oct 2019 11:24:40 +0200 Subject: [PATCH] fix double occurence of Sec. sec. --- Makefile | 2 +- abbreviations.txt | 2 ++ pandoc-crossref.yaml | 3 +++ paper.md | 4 ++-- 4 files changed, 8 insertions(+), 3 deletions(-) create mode 100644 pandoc-crossref.yaml diff --git a/Makefile b/Makefile index 1834115..f730da2 100755 --- a/Makefile +++ b/Makefile @@ -7,7 +7,7 @@ paper.bbl: paper.tex paper.bib bibtex paper.aux paper.tex: paper.md revtex.template - pandoc -s --filter pandoc-fignos --filter pandoc-citeproc --filter pandoc-crossref --natbib paper.md -o paper.tex --bibliography paper.bib --abbreviations=abbreviations.txt --wrap=preserve --listings --template revtex.template + pandoc -s --filter pandoc-fignos --filter pandoc-citeproc --filter pandoc-crossref -M "crossrefYaml=pandoc-crossref.yaml" --natbib paper.md -o paper.tex --bibliography paper.bib --abbreviations=abbreviations.txt --wrap=preserve --listings --template revtex.template .PHONY: clean clean: diff --git a/abbreviations.txt b/abbreviations.txt index ae73b4a..9c7d303 100644 --- a/abbreviations.txt +++ b/abbreviations.txt @@ -1,2 +1,4 @@ Fig. Eq. +i.e. +e.g. diff --git a/pandoc-crossref.yaml b/pandoc-crossref.yaml new file mode 100644 index 0000000..0f5018a --- /dev/null +++ b/pandoc-crossref.yaml @@ -0,0 +1,3 @@ +figPrefix: "Fig." +secPrefix: "Sec." +autoSectionLabels: false diff --git a/paper.md b/paper.md index f5c3ad7..4ee60ee 100755 --- a/paper.md +++ b/paper.md @@ -30,7 +30,7 @@ Even though it is suboptimal, one usually resorts to sampling $X$ on a homogeneo #### Choosing new points based on existing data improves the simulation efficiency. <!-- This should convey the point that it is advantageous to do this. --> -An alternative, which improves the simulation efficiency, is to choose new potentially interesting points in $X$, based on existing data [@Gramacy2004; @Figueiredo1995; @Castro2008; @Chen2017]. <!-- cite i.e., hydrodynamics--> +An alternative, which improves the simulation efficiency, is to choose new potentially interesting points in $X$, based on existing data [@Gramacy2004; @Figueiredo1995; @Castro2008; @Chen2017]. Bayesian optimization works well for high-cost simulations where one needs to find a minimum (or maximum) [@Takhtaganov2018]. However, if the goal of the simulation is to approximate a continuous function using the fewest points, the continuity of the approximation is achieved by a greedy algorithm that samples mid-points of intervals with the largest distance or curvature [@Wolfram2011]. Such a sampling strategy (i.e., in Fig. @fig:algo) would trivially speedup many simulations. @@ -298,7 +298,7 @@ Here, we see that for homogeneous sampling to get the same error as sampling wit ## A parallelizable adaptive integration algorithm based on cquad #### The `cquad` algorithm belongs to a class that is parallelizable. -In Sec. @sec:review we mentioned the doubly-adaptive integration algorithm `CQUAD` [@Gonnet2010]. +In @sec:review we mentioned the doubly-adaptive integration algorithm `CQUAD` [@Gonnet2010]. This algorithm uses a Clenshaw-Curtis quadrature rules of increasing degree $d$ in each interval [@Clenshaw1960]. The error estimate is $\sqrt{\int{\left(f_0(x) - f_1(x)\right)^2}}$, where $f_0$ and $f_1$ are two successive interpolations of the integrand. To reach the desired total error, intervals with the maximum absolute error are improved. -- GitLab