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Large scale computer simulations are time-consuming to run and often require sweeps over
input parameters to obtain a qualitative understanding of the simulation output. These sweeps of
parameters can potentially make the simulations prohibitively expensive. Therefore, when evaluating
a function numerically, it is advantageous to sample it more densely in the interesting regions (called
adaptive sampling) instead of evaluating it on a manually-defined homogeneous grid. Such adaptive
algorithms exist within the machine learning field. These methods can suggest a new point to calculate
based on all existing data at that time; however, this is an expensive operation. An alternative
is to use local algorithms—in contrast to the previously mentioned global algorithms—which can
suggest a new point, based only on the data in the immediate vicinity of a new point. This approach
works well, even when using hundreds of computers simultaneously because the point suggestion
algorithm is cheap (fast) to evaluate. We provide a reference implementation in Python and show its
performance.

I. INTRODUCTION

a. Simulations are costly and often require sampling
a region in parameter space. In the computational sci-
ences, one often does costly simulations—represented by
a function f—where a certain region in parameter space
X is sampled, mapping to a codomain Y : f : X → Y .
Frequently, the different points in X can be independently
calculated. Even though it is suboptimal, one usually re-
sorts to sampling X on a homogeneous grid because of
its simple implementation.
b. Choosing new points based on existing data im-

proves the simulation efficiency. An alternative, which
improves the simulation efficiency, is to choose new poten-
tially interesting points in X, based on existing data.1–4
Bayesian optimization works well for high-cost simula-
tions where one needs to find a minimum (or maximum).5
However, if the goal of the simulation is to approximate a
continuous function using the fewest points, an alternative
strategy is to use a greedy algorithm that samples mid-
points of intervals with the largest length or curvature.6
Such a sampling strategy (i.e., in Fig. 1) would trivially
speedup many simulations. Another advantage of such an
algorithm is that it may be parallelized cheaply (i.e. more
than one point may be sampled at a time), as we do not
need to perform a global computation over all the data
(as we would with Bayesian sampling) when determining
which points to sample next.
c. We describe a class of algorithms relying on lo-

cal criteria for sampling, which allow for easy paral-
lelization and have a low overhead. The algorithm vi-
sualized in 1 consists of the following steps: (1) evalu-
ate the function at the boundaries a and b, of the in-
terval of interest, (2) calculate the loss for the inter-
val La,b =

√
(b− a)2 + (f(b)− f(a))2, (3) pick a new

point xnew in the centre of the interval with the largest
loss, (xi, xj), (4) calculate f(xnew), (5) discard the inter-
val (xi, xj) and create two new intervals (xi, xnew) and

(xnew, xj), calculating their losses Lxi,xnew and Lxnew,xj

(6) repeat from step 3.
In this paper we present a class of algorithms that

generalizes the above example. This general class of algo-
rithms is based on using a priority queue of subdomains
(intervals in 1-D), ordered by a loss obtained from a local
loss function (which depends only on the data local to
the subdomain), and greedily selecting points from sub-
domains at the top of the priority queue. The advantage
of these local algorithms is that they have a lower compu-
tational overhead than algorithms requiring global data
and updates (e.g. Bayesian sampling), and are therefore
more amenable to parallel evaluation of the function of
interest.
d. We provide a reference implementation, the Adap-

tive package, and demonstrate its performance. We pro-
vide a reference implementation, the open-source Python
package called Adaptive,8 which has previously been used
in several scientific publications.9–12 It has algorithms
for f : RN → RM , where N,M ∈ Z+ but which work
best when N is small; integration in R; and the aver-
aging of stochastic functions. Most of our algorithms
allow for a customizable loss function with which one can
adapt the sampling algorithm to work optimally for dif-
ferent classes of functions. It integrates with the Jupyter
notebook environment as well as popular parallel com-
putation frameworks such as ipyparallel, mpi4py, and
dask.distributed. It provides auxiliary functionality
such as live-plotting, inspecting the data as the calcula-
tion is in progress, and automatically saving and loading
of the data.
The raw data and source code that produces all plots

in this paper is available at 13.

II. REVIEW OF ADAPTIVE SAMPLING

Optimal sampling and planning based on data is a ma-
ture field with different communities providing their own
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Figure 1. Visualization of a 1-D sampling strategy for a
black-box function (grey). We start by calculating the two
boundary points. Two adjacent existing data points (black)
{xi, yi} define an interval. Each interval has a loss Li,i+1

associated with it that can be calculated from the points inside
the interval Li,i+1(xi, xi+1, yi, yi+1) and optionally of N next
nearest neighboring intervals. At each iteration the interval
with the largest loss is indicated (red), with its corresponding
candidate point (green) picked in the middle of the interval.
The loss function in this example is an approximation to the
curvature, calculated using the data from an interval and its
nearest neighbors.

context, restrictions, and algorithms to solve their prob-
lems. To explain the relation of our approach with prior
work, we discuss several existing contexts. This is not a
systematic review of all these fields, but rather, we aim to
identify the important traits and design considerations.
a. Experiment design uses Bayesian sampling because

the computational costs are not a limitation. Optimal
experiment design (OED) is a field of statistics that min-
imizes the number of experimental runs needed to esti-
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Figure 2. Comparison of homogeneous sampling (top) with
adaptive sampling (bottom) for different one-dimensional func-
tions (red) where the number of points in each column is identi-
cal. We see that when the function has a distinct feature—such
as with the peak and tanh—adaptive sampling performs much
better. When the features are homogeneously spaced, such as
with the wave packet, adaptive sampling is not as effective as
in the other cases.

mate specific parameters and, thereby, reduce the cost of
experimentation.14 It works with many degrees of free-
dom and can consider constraints, for example, when
the sample space contains regions that are infeasible for
practical reasons. One form of OED is response-adaptive
design,15 which concerns the adaptive sampling of designs
for statistical experiments. Here, the acquired data (i.e.,
the observations) are used to estimate the uncertainties
of a certain desired parameter. It then suggests further
experiments that will optimally reduce these uncertain-
ties. In this step of the calculation Bayesian statistics is
frequently used. Bayesian statistics naturally provides
tools for answering such questions; however, because it
provides closed-form solutions, Markov chain Monte Carlo
(MCMC) sampling is the standard tool for determining
the most promising samples. In a typical non-adaptive
experiment, decisions on which experiments to perform
are made in advance.
b. Plotting and low dimensional integration uses local

sampling. Plotting a low dimensional function in be-
tween bounds requires one to evaluate the function on
sufficiently many points such that when we interpolate val-
ues in between data points, we get an accurate description
of the function values that were not explicitly calculated.
In order to minimize the number of function evaluations,
one can use adaptive sampling routines. For example, for
one-dimensional functions, Mathematica16 implements
a FunctionInterpolation class that takes the function,
xmin, and xmax, and returns an object that samples the
function more densely in regions with high curvature;
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Figure 3. Comparison of homogeneous sampling (top) with
adaptive sampling (bottom) for different two-dimensional func-
tions where the number of points in each column is identical.
On the left is the function f(x) = x+ a2/(a2 + (x− xoffset)

2).
In the middle a topological phase diagram from 7, where the
function can take the values -1 or 1. On the right, we plot
level crossings for a two-level quantum system. In all cases
using Adaptive results in a higher fidelity plot.

however, details on the algorithm are not published. Sub-
sequently, we can query this object for points in between
xmin and xmax, and get the interpolated value, or we
can use it to plot the function without specifying a grid.
Another application for adaptive sampling is numerical
integration. It works by estimating the integration error
of each interval and then minimizing the sum of these
errors greedily. For example, the CQUAD algorithm17 in the
GNU Scientific Library18 implements a more sophisticated
strategy and is a doubly-adaptive general-purpose integra-
tion routine which can handle most types of singularities.
In general, it requires more function evaluations than
the integration routines in QUADPACK;18 however, it works
more often for difficult integrands. It is doubly-adaptive
because it can decide to either subdivide intervals into
more intervals or refine an interval by using a polynomial
approximation of higher degree, requiring more points.
c. PDE solvers and computer graphics use adaptive

meshing. Hydrodynamics19,20 and astrophysics21 use an
adaptive refinement of the triangulation mesh on which a
partial differential equation is discretized. By providing
smaller mesh elements in regions with a higher variation
of the solution, they reduce the amount of data and cal-
culation needed at each step of time propagation. The
remeshing at each time step happens globally, and this
is an expensive operation. Therefore, mesh optimization
does not fit our workflow because expensive global up-
dates should be avoided. Computer graphics uses similar
adaptive methods where a smooth surface can represent a
surface via a coarser piecewise linear polygon mesh, called
a subdivision surface.22 An example of such a polygo-
nal remeshing method is one where the polygons align
with the curvature of the space or field; this is called

anisotropic meshing.23

III. DESIGN CONSTRAINTS AND THE
GENERAL ALGORITHM

a. We aim to sample low to intermediate cost func-
tions in parallel. The general algorithm that we describe
in this paper works best for low to intermediate cost func-
tions. Determining the next candidate points happens in
a single sequential process while the function executions
can be in parallel. This means that to benefit from an
adaptive sampling algorithm, that the time it takes to
suggest a new point tsuggest must be much smaller than
the average function execution time tf over the number
of parallel workers N : tf/N � tsuggest. Functions that
are fast to evaluate can be calculated on a dense grid, and
functions that are slow to evaluate might benefit from full-
scale Bayesian optimization where tsuggest is large. We
are interested in the intermediate case, when one wishes
to sample adaptively, but cannot afford the luxury of
fitting of all available data at each step. While this may
seem restrictive, we assert that a large class of functions
is inside the right regime for local adaptive sampling to
be beneficial.
b. We propose to use a local loss function as a cri-

terion for choosing the next point. Because we aim to
keep the suggestion time tsuggest small, we propose to use
the following approach, which operates on a constant-size
subset of the data to determine which point to suggest
next. We keep track of the subdomains in a priority queue,
where each subdomain is assigned a priority called the
“loss”. To suggest a new point we remove the subdomain
with the largest loss from the priority queue and select
a new point xnew from within it (typically in the centre)
This splits the subdomain into several smaller subdomains
{Si} that each contain xnew on their boundaries. After
evaluating the function at xnew we must then recompute
the losses using the new data. We choose to consider loss
functions that are “local”, i.e. the loss for a subdomain
depends only on the points contained in that subdomain
and possibly a (small) finite number of neighboring sub-
domains. This means that we need only recalculate the
losses for subdomains that are “close” to xnew. Having
computed the new losses we must then insert the {Si}
into the priority queue, and also update the priorities of
the neighboring subdomains, if their loss was recalculated.
After these insertions and updates we are ready to suggest
the next point to evaluate. Due to the local nature of this
algorithm and the sparsity of space in higher dimensions,
we will suffer from the curse of dimensionality. The al-
gorithm, therefore, works best in low dimensional space;
typically calculations that can reasonably be plotted, so
with 1, 2, or 3 degrees of freedom.

c. We summarize the algorithm with pseudocode The
algorithm described above can be made more precise by
the following Python code:

1 # First evaluate the bounds of the domain
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2 first_subdomain, = domain.subdomains()
3 for x in domain.points(first_subdomain):
4 data[x] = f(x)
5
6 queue.insert(first_subdomain,

priority=loss(domain, first_subdomain,
data))

7
8 while queue.max_priority() < target_loss:
9 loss, subdomain = queue.pop()

10
11 new_points, new_subdomains =

domain.split(subdomain)
12 for x in new_points:
13 data[x] = f(x)
14
15 for subdomain in new_subdomains:
16 queue.insert(subdomain,

priority=loss(domain, subdomain, data))
17
18 if loss.n_neighbors > 0:
19 subdomains_to_update = set()
20 for d in new_subdomains:
21 neighbors = domain.neighbors(d,

loss.n_neighbors)
22 subdomains_to_update.update(neighbors)
23 subdomains_to_update -=

set(new_subdomains)
24 for subdomain in subdomains_to_update:
25 queue.update(subdomain,

priority=loss(domain, subdomain,
data))

where we have used the following definitions:

f: The function we wish to learn

queue: A priority queue of unique elements, support-
ing the following methods: max_priority(), to
get the priority of the top element; pop(), re-
move and return the top element and its prior-
ity; insert(element, priority), insert the given
element with the given priority into the queue;
update(element, priority), update the priority
of the given element, which is already in the queue.

domain: An object representing the domain of f
split into subdomains. Supports the follow-
ing methods: subdomains(), returns all the
subdomains; points(subdomain), returns all
the points contained in the provided subdo-
main; split(subdomain), splits a subdomain
into smaller subdomains, returning the new
points and new subdomains produced as a re-
sult; neighbors(subdomain, n_neighbors), re-
turns the subdomains neighboring the provided sub-
domain.

data: A hashmap storing the points x and their values
f(x).

loss(domain, subdomain, data): The loss function,
with loss.n_neighbors being the degree of neigh-
boring subdomains that the loss function uses.

d. As an example, the interpoint distance is a good loss
function in one dimension. An example of such a local
loss function for a one-dimensional function is the inter-
point distance, i.e. given a subdomain (interval) (xa, xb)
with values (ya, yb) the loss is

√
(xa − xb)2 + (ya − yb)2.

A more complex loss function that also takes the first
neighboring intervals into account is one that approxi-
mates the second derivative using a Taylor expansion.
Figure 2 shows a comparison between a result using this
loss and a function that is sampled on a grid.
e. This algorithm has a logarithmic overhead when

combined with an appropriate data structure The key
data structures in the above algorithm are queue and
domain. The priority queue must support efficiently find-
ing and removing the maximum priority element, as well
as updating the priority of arbitrary elements whose pri-
ority is unknown (when updating the loss of neighboring
subdomains). Such a datastructure can be achieved with
a combination of a hashmap (mapping elements to their
priority) and a red–black tree or a skip list24 that stores
(priority, element). This has average complexity of
O(log n) for all the required operations. In the reference
implementation, we use the SortedContainers Python
package,25 which provides an efficient implementation of
such a data structure optimized for realistic sizes, rather
than asymptotic complexity. The domain object requires
efficiently splitting a subdomain and querying the neigh-
bors of a subdomain. For the one-dimensional case this
can be achieved by using a red–black tree to keep the
points x in ascending order. In this case both operations
have an average complexity of O(log n). In the reference
implementation we again use SortedContainers. We thus
see that by using the appropriate data structures the time
required to suggest a new point is tsuggest ∝ O(log n).
The total time spent on suggesting points when sampling
N points in total is thus O(N logN).
f. With many points, due to the loss being local, paral-

lel sampling incurs no additional cost. So far, the descrip-
tion of the general algorithm did not include parallelism.
In order to include parallelism we need to allow for points
that are “pending”, i.e. whose value has been requested
but is not yet known. In the sequential algorithm sub-
domains only contain points on their boundaries. In the
parallel algorithm pending points are placed in the inte-
rior of subdomains, and the priority of the subdomains
in the queue is reduced to take these pending points into
account. Later, when a pending point x is finally evalu-
ated, we split the subdomain that contains x such that it
is on the boundary of new, smaller, subdomains. We then
calculate the priority of these new subdomains, and insert
them into the priority queue, and update the priority of
neighboring subdomains if required.
g. We summarize the algorithm with pseudocode The

parallel version of the algorithm can be described by the
following Python code:
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1 def priority(domain, subdomain, data):
2 subvolumes = domain.subvolumes(subdomain)
3 max_relative_subvolume = max(subvolumes)

/ sum(subvolumes)
4 L_0 = loss(domain, subdomain, data)
5 return max_relative_subvolume * L_0
6
7 # First evaluate the bounds of the domain
8 first_subdomain, = domain.subdomains()
9 for x in domain.points(first_subdomain):

10 data[x] = f(x)
11
12 new_points =

domain.insert_points(first_subdomain,
executor.ncores)

13 for x in new_points:
14 data[x] = None
15 executor.submit(f, x)
16
17 queue.insert(first_subdomain,

priority=priority(domain, subdomain, data))
18
19 while executor.n_outstanding_points > 0:
20 x, y = executor.get_one_result()
21 data[x] = y
22
23 # Split into smaller subdomains with ‘x‘ at

a subdomain boundary
24 # And calculate the losses for these new

subdomains
25 old_subdomains, new_subdomains =

domain.split_at(x)
26 for subdomain in old_subdomains:
27 queue.remove(old_subdomain)
28 for subdomain in new_subdomains:
29 queue.insert(subdomain, priority(domain,

subdomain, data))
30
31 if loss.n_neighbors > 0:
32 subdomains_to_update = set()
33 for d in new_subdomains:
34 neighbors = domain.neighbors(d,

loss.n_neighbors)
35 subdomains_to_update.update(neighbors)
36 subdomains_to_update -=

set(new_subdomains)
37 for subdomain in subdomains_to_update:
38 queue.update(subdomain,

priority(domain, subdomain, data))
39
40 # If it looks like we’re done, don’t send

more work
41 if queue.max_priority() < target_loss:
42 continue
43
44 # Send as many points for evaluation as we

have compute cores

45 for _ in range(executor.ncores -
executor.n_outstanding_points)

46 loss, subdomain = queue.pop()
47 new_point, =

domain.insert_points(subdomain, 1)
48 data[new_point] = None
49 executor.submit(f, new_point)
50 queue.insert(subdomain, priority(domain,

subdomain, data))

Where we have used identical definitions to the serial
case for f, data, loss and the following additional defini-
tions:

queue: As for the sequential case, but must additionally
support: remove(element), remove the provided
element from the queue.

domain: As for the sequential case, but must additionally
support: insert_points(subdomain, n), insert n
(pending) points into the given subdomain without
splitting the subdomain; subvolumes(subdomain),
return the volumes of all the sub-subdomains con-
tained within the given subdomain; split_at(x),
split the domain at a new (evaluated) point x, re-
turning the old subdomains that were removed, and
the new subdomains that were added as a result.

executor: An object that can submit function evalua-
tions to computing resources and retrieve results.
Supports the following methods: submit(f, x),
schedule the execution of f(x) and do not block
; get_one_result(), block waiting for a single re-
sult, returning the pair (x, y) as soon as it becomes
available; ncores, the total number of parallel pro-
cessing units; n_outstanding_points, the number
of function evaluations that have been requested
and not yet retrieved, incremented by submit and
decremented by get_one_result.

IV. LOSS FUNCTION DESIGN

a. Sampling in different problems pursues different
goals Not all goals are achieved by using an identical
sampling strategy; the specific problem determines the
goal. For example, quadrature rules requires a denser
sampling of the subdomains where the interpolation error
is highest, plotting (or function approximation) requires
continuity of the approximation, maximization only cares
about finding an optimum, and isoline or isosurface sam-
pling aims to sample regions near a given function value
more densely. These different sampling goals each require
a loss function tailored to the specific case.
b. Different loss functions tailor sampling performance

for different classes of functions Additionally, it is im-
portant to take the class of functions being learned when
selecting a loss function into account, even if the spe-
cific goal (e.g. continuity of the approximation) remains
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unchanged. For example, if we wanted a smooth ap-
proximation to a function with a singularity, then the
interpoint distance loss function would be a poor choice,
even if it is generally a good choice for that specified goal.
This is because the aforementioned loss function will “lock
on” to the singularity, and will fail to sample the function
elsewhere once it starts. This is an illustration of the
following principle: for optimal sampling performance,
loss functions should be tailored to the particular domain
of interest.
c. Loss function regularization avoids singularities

One strategy for designing loss functions is to take existing
loss functions and apply a regularization. For example,
to limit the over-sampling of singularities inherent in the
distance loss we can set the loss of subdomains that are
smaller than a given threshold to zero, which will prevent
them from being sampled further.
d. Adding loss functions allows for balancing between

multiple priorities. Another general strategy for design-
ing loss functions is to combine existing loss functions that
optimize for particular features, and then combine them
together. Typically one weights the different constituent
losses to prioritize the different features. For example,
combining a loss function that calculates the curvature
with a distance loss function will sample regions with
high curvature more densely, while ensuring continuity.
Another important example is combining a loss function
with the volume of the subdomain, which will ensure that
the sampling is asymptotically dense everywhere (because
large subdomains will have a correspondingly large loss).
This is important if there are many distinct and narrow
features that all need to be found, and densely sampled
in the region around the feature.

V. EXAMPLES

A. Line simplification loss

a. The line simplification loss is based on an inverse
Visvalingam’s algorithm. Inspired by a method com-
monly employed in digital cartography for coastline sim-
plification, Visvalingam’s algorithm, we construct a loss
function that does its reverse.26 Here, at each point (ig-
noring the boundary points), we compute the effective
area associated with its triangle, see Fig. 4(b). The loss
then becomes the average area of two adjacent triangles.
By Taylor expanding f around x it can be shown that
the area of the triangles relates to the contributions of
the second derivative. We can generalize this loss to N
dimensions, where the triangle is replaced by a (N + 1)
dimensional simplex.
In order to compare sampling strategies, we need to

define some error. We construct a linear interpolation
function f̃ , which is an approximation of f . We calculate

(a)

(b)

(c)

(d)

(e)

Figure 4. Line loss visualization. In this example, we start with
6 points (a) on the function (grey). Ignoring the endpoints,
the effective area of each point is determined by its associated
triangle (b). The loss of each interval can be computed by
taking the average area of the adjacent triangles. Subplots (c),
(d), and (e) show the subsequent iterations following (b).
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Figure 5. The L1-norm error as a function of number of points
N for the functions in Fig. 2 (a,b,c). The interrupted lines
correspond to homogeneous sampling and the solid line to the
sampling with the line loss. In all cases adaptive sampling
performs better, where the error is a factor 1.6-20 lower for
N = 10000.

the error in the L1-norm, defined as,

Err1(f̃) =
∥∥∥f̃ − f

∥∥∥
L1

=

∫ b

a

∣∣∣f̃(x)− f(x)
∣∣∣ dx.

This error approaches zero as the approximation becomes
better.
Figure 5 shows this error as a function of the number

of points N . Here, we see that for homogeneous sampling
to get the same error as sampling with a line loss, a factor
≈ 1.6− 20 times more points are needed, depending on
the function.
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B. A parallelizable adaptive integration algorithm
based on cquad

a. The cquad algorithm belongs to a class that is par-
allelizable. In Sec. II we mentioned the doubly-adaptive
integration algorithm CQUAD.17 This algorithm uses a
Clenshaw-Curtis quadrature rules of increasing degree d in

each interval.27 The error estimate is
√∫

(f0(x)− f1(x))
2,

where f0 and f1 are two successive interpolations of the
integrand. To reach the desired total error, intervals with
the maximum absolute error are improved. Either (1) the
degree of the rule is increased or (2) the interval is split if
either the function does not appear to be smooth or a rule
of maximum degree (d = 4) has been reached. All points
inside the intervals can be trivially calculated in parallel;
however, when there are more resources available than
points, Adaptive needs to guess whether an (1) interval’s
should degree of the rule should be increased or (2) or
the interval is split. Here, we choose to always increase
until d = 4, after which the interval is split.

C. isoline and isosurface sampling

A judicious choice of loss function allows to sample the
function close to an isoline (isosurface in 2D). Specifically,
we prioritize subdomains that are bisected by the isoline
or isosurface:

1 def isoline_loss_function(level, priority):
2 def loss(simplex, values, value_scale):
3 values = np.array(values)
4 which_side = np.sign(level *

value_scale - values)
5 crosses_isoline =

np.any(np.diff(which_side))
6 return volume(simplex)* (1 + priority

* crosses_isoline)
7 return loss

See Fig. 6 for a comparison with uniform sampling.

VI. IMPLEMENTATION AND BENCHMARKS

a. The learner abstracts a loss based priority queue.
We will now introduce Adaptive’s API. The object that
can suggest points based on existing data is called a
learner. The learner abstracts the sampling strategy based
on a priority queue and local loss functions that we de-
scribed in Sec. III. We define a learner as follows:

1 from adaptive import Learner1D
2
3 def f(x):
4 a = 0.01
5 return x + a**2 / (a**2 + x**2)
6
7 learner = Learner1D(f, bounds=(-1, 1))
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Figure 6. Comparison of isoline sampling of f(x, y) = x2+y3 at
f(x, y) = 0.1 using homogeneous sampling (left) and adaptive
sampling (right) with the same amount of points n = 122 =
144. We plot the function interpolated on a grid (color) with
the triangulation on top (white) where the function is sampled
on the vertices. The solid line (black) indicates the isoline at
f(x, y) = 0.1. The isoline in the homogeneous case consists
of 43 line segments and the adaptive case consists of 94 line
segments.

We provide the function to learn, the domain bound-
aries, and use a default loss function. We can then ask
the learner for points:

1 points, priorities = learner.ask(4)

The learner gives us back the points that we should
sample next, as well as the priorities of these points (the
loss of the parent subdomains). We can then evaluate
some of these points and tell the learner about the results:

1 data = [learner.function(x) for x in points]
2 learner.tell_many(points, data)

To change the loss function we pass a function that
takes points and values, like so:

1 def distance_loss(xs, ys): # used by default
2 dx = xs[1] - xs[0]
3 dy = ys[1] - ys[0]
4 return np.hypot(dx, dy)
5
6 learner = Learner1D(peak, bounds=(-1, 1),

loss_per_interval=distance_loss)

If we wanted to create the “volume loss” discussed in
Sec. IV we could simply write:

1 def uniform_loss(xs, ys):
2 dx = xs[1] - xs[0]
3 return dx
4
5 learner = Learner1D(peak, bounds=(-1, 1),

loss_per_interval=uniform_loss)
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b. The runner orchestrates the function evaluation.
The previous example shows how we can drive the learner
manually. For example, to run the learner until the loss
is below 0.01 we could do the following:

1 def goal(learner):
2 return learner.loss() < 0.01
3
4 while not goal(learner):
5 (x,), _ = learner.ask(1)
6 y = f(x)
7 learner.tell(x, y)

This approach allows for the best adaptive performance
(i.e. fewest number of points to reach the goal) because
the learner has maximal information about f every time
we ask it for the next point. However this does not allow
to take advantage of multiple cores, which may enable
better walltime performance (i.e. time to reach the goal).
Adaptive abstracts the task of driving the learner and
executing f in parallel to a Runner :

1 from adaptive import Runner
2 runner = Runner(learner, goal)

The above code uses the default parallel execution
context, which occupies all the cores on the machine. It
is simple to use ipyparallel to enable calculations on a
cluster:

1 import ipyparallel
2
3 runner = Runner(learner, goal,

executor=ipyparallel.Client())

If the above code is run in a Jupyter notebook it will
not block. Adaptive takes advantage of the capabili-
ties of the IPython to execute concurrently with the
Python kernel. This means that as the calculation is in
progress the data is accessible without race conditions via
learner.data, and can be plotted with learner.plot().
Additionally, in a Jupyter notebook environment, we can
call runner.live_info() to display useful information
about the ongoing calculation.

We have also implemented a LearnerND with a similar
API

1 from adaptive import LearnerND
2
3 def ring(xy): # pretend this is a slow

function
4 x, y = xy
5 a = 0.2
6 return x + np.exp(-(x**2 + y**2 -

0.75**2)**2/a**4)
7
8 learner = adaptive.LearnerND(ring,

bounds=[(-1, 1), (-1, 1)])
9 runner = Runner(learner, goal)

Again, it is possible to specify a custom loss function
using the loss_per_simplex argument.

c. The BalancingLearner can run many learners simul-
taneously. Frequently, more than one function (learner)
needs to run at once, to do this we have implemented the
BalancingLearner, which does not take a function, but
a list of learners. This learner internally asks all child
learners for points and will choose the point of the learner
that maximizes the loss improvement; it balances the
resources over the different learners. We can use it like

1 from functools import partial
2 from adaptive import BalancingLearner
3
4 def f(x, pow):
5 return x**pow
6
7 learners = [Learner1D(partial(f, pow=i)),

bounds=(-10, 10) for i in range(2, 10)]
8 bal_learner = BalancingLearner(learners)
9 runner = Runner(bal_learner, goal)

For more details on how to use Adaptive, we recommend
reading the tutorial inside the documentation.28

VII. POSSIBLE EXTENSIONS

a. Anisotropic triangulation would improve the algo-
rithm. One of the fundamental operations in the adap-
tive algorithm is selecting a point from within a subdo-
main. The current implementation uses simplices for sub-
domains (triangles in 2D, tetrahedrons in 3D), and picks
a point either (1) in the center of the simplex or (2) on the
longest edge of the simplex. The choice depends on the
shape of the simplex; the center is only used if using the
longest edge would produce unacceptably thin simplices.
A better strategy may be to choose points on the edge of
a simplex such that the simplex aligns with the gradient
of the function, creating an anisotropic triangulation.29
This is a similar approach to the anisotropic meshing
techniques mentioned in the literature review.
b. Learning stochastic functions is a promising direc-

tion. Stochastic processes frequently appear in numeri-
cal sciences. Currently, Adaptive has an AverageLearner
that samples a random variable (modelled as a function
that takes no parameters and returns a different value
each time it is called) until the mean is known to within
a certain standard error. This is advantageous because
no predetermined number of samples has to be set before
starting the simulation. Extending this learner to be able
to deal with stochastic functions in arbitrary dimensions
would be a useful addition.

c. Experimental control needs to deal with noise, hys-
teresis, and the cost for changing parameters. Finally,
there is the potential to use Adaptive for experimental
control. There are a number of challenges associated with
this use case. Firstly, experimental results are typically
stochastic (due to noise), and would require sampling the
same point in parameter space several times. This aspect
is closely associated with sampling stochastic functions
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discussed in the preceding paragraph. Secondly, in an
experiment one typically cannot jump around arbitrary
quickly in parameter space. It may be faster to sweep
one parameter compared to another; for example, in con-
densed matter physics experiments, sweeping magnetic
field is much slower than sweeping voltage source fre-
quency. Lastly, some experiments exhibit hysteresis. This
means that results may not be reproducible if a different
path is taken through parameter space. In such a case
one would need to restrict the sampling to only occur
along a certain path in parameter space. Incorporating
such extensions into Adaptive would require adding a
significant amount of extra logic, as learners would need
to take into account not only the data available, but the
order in which the data was obtained, and the timing

statistics at different points in parameter space. Despite
these challenges, however, Adaptive can already be used
in experiments that are not restricted in these ways.
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