diff --git a/Learner-timing.ipynb b/Learner-timing.ipynb deleted file mode 100644 index 85bbf2dd1f3e175e1c89dff07519d741666be534..0000000000000000000000000000000000000000 --- a/Learner-timing.ipynb +++ /dev/null @@ -1,80 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Timing" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import holoviews as hv\n", - "hv.notebook_extension()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import learner\n", - "from time import time" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "times = []\n", - "xs = np.random.random((1000, 1000))\n", - "ys = np.random.random((1000, 1000))\n", - "for (i, (x, y)) in enumerate(zip(xs, ys)):\n", - " learner = learner.Learner1D(x[:i+2], y[:i+2])\n", - " start = time()\n", - " learner.choose_points(n=1)\n", - " stop = time()\n", - " times.append(stop-start)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "hv.Curve(times)" - ] - } - ], - "metadata": { - "anaconda-cloud": {}, - "kernelspec": { - "display_name": "Python [conda env:py36]", - "language": "python", - "name": "conda-env-py36-py" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.0" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/Learner-widgets.ipynb b/Learner-widgets.ipynb deleted file mode 100644 index dc2e5ee18923a82e8ad84c9908669f00e78f1878..0000000000000000000000000000000000000000 --- a/Learner-widgets.ipynb +++ /dev/null @@ -1,132 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Adaptive" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import holoviews as hv\n", - "hv.notebook_extension()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import learner\n", - "import importlib\n", - "importlib.reload(learner)\n", - "\n", - "def func(x):\n", - " \"\"\"Function with a sharp peak on a smooth background\"\"\"\n", - " x = np.asarray(x)\n", - " a = 0.01\n", - " return x + a**2/(a**2 + x**2)\n", - "\n", - "def plot(learner, nan_is_zero=False, interpolation=False):\n", - " if interpolation:\n", - " learner.interpolate()\n", - " d = learner.interp_data\n", - " else:\n", - " d = learner.data\n", - "\n", - " xy = [(k, d[k]) for k in sorted(d)]\n", - " x, y = np.array(xy, dtype=float).T\n", - "\n", - " if nan_is_zero:\n", - " y = np.nan_to_num(y)\n", - " return hv.Scatter((x, y))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# With direct results" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "hm = {}\n", - "xs = np.linspace(-1, 1, 5)\n", - "ys = func(xs)\n", - "learner = learner.Learner1D(xs, ys)\n", - "hm[0] = plot(learner)\n", - "\n", - "for i in range(1, 30):\n", - " xs = learner.choose_points(n=1, add_to_data=True)\n", - " ys = func(xs)\n", - " learner.add_data(xs, ys)\n", - " hm[i] = plot(learner, nan_is_zero=True)\n", - " \n", - "hv.HoloMap(hm)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# With `concurrent.futures`\n", - "\n", - "It's plotting the points without a result at zero" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "hm = {}\n", - "xs = np.linspace(-1, 1, 5)\n", - "ys = func(xs)\n", - "learner = learner.Learner1D(xs, ys)\n", - "hm[0] = plot(learner)\n", - "\n", - "for i in range(1, 20):\n", - " xs = learner.choose_points(n=1)\n", - " # Do not calculate ys here (as if it's a `concurrent.futures`)\n", - " hm[i] = plot(learner, interpolation=True)\n", - " \n", - "hv.HoloMap(hm)" - ] - } - ], - "metadata": { - "anaconda-cloud": {}, - "kernelspec": { - "display_name": "Python [conda env:py36]", - "language": "python", - "name": "conda-env-py36-py" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.0" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/Learner-parallel-plotter.ipynb b/learner.ipynb similarity index 95% rename from Learner-parallel-plotter.ipynb rename to learner.ipynb index 10693ad4b558effc90844b4b52ff4537d45adfe9..cec531763b95fa73ba100a2deaf87e503964ff02 100644 --- a/Learner-parallel-plotter.ipynb +++ b/learner.ipynb @@ -10,7 +10,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [ "import adaptive\n", @@ -42,6 +44,7 @@ "cell_type": "code", "execution_count": null, "metadata": { + "collapsed": true, "scrolled": false }, "outputs": [], @@ -54,7 +57,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [ "# Same function evaluated on homogeneous grid with same amount of points\n", @@ -105,6 +110,7 @@ "cell_type": "code", "execution_count": null, "metadata": { + "collapsed": true, "scrolled": false }, "outputs": [],