From bf0107b1e8763ef98eb32dab2b05dd53b9669c83 Mon Sep 17 00:00:00 2001 From: Bas Nijholt <basnijholt@gmail.com> Date: Fri, 8 Sep 2017 14:17:25 +0200 Subject: [PATCH] 2D: remove dtype argument from __init__, fix it to float --- adaptive/learner.py | 6 ++---- 1 file changed, 2 insertions(+), 4 deletions(-) diff --git a/adaptive/learner.py b/adaptive/learner.py index 57d53900..e5e88f29 100644 --- a/adaptive/learner.py +++ b/adaptive/learner.py @@ -582,8 +582,6 @@ class Learner2D(BaseLearner): bounds : list of 2-tuples A list ``[(a1, b1), (a2, b2)]`` containing bounds, one per dimension. - dtype : dtype, optional - Type of data from function. Default: float (real-valued) Attributes ---------- @@ -614,14 +612,14 @@ class Learner2D(BaseLearner): it, your function needs to be slow enough to compute. """ - def __init__(self, function, bounds, dtype=float): + def __init__(self, function, bounds): self.function = function self.ndim = len(bounds) if self.ndim != 2: raise ValueError("Only 2-D sampling supported.") self.bounds = tuple([(float(a), float(b)) for a, b in bounds]) self._points = np.zeros([100, self.ndim]) - self._values = np.zeros([100], dtype) + self._values = np.zeros([100], dtype=float) self.n = 0 self.nstack = 10 self._stack = [] -- GitLab