From 19c3b5984aa03299a2afbaae1f606babb1ad738c Mon Sep 17 00:00:00 2001 From: Kostas Vilkelis <kostasvilkelis@gmail.com> Date: Fri, 23 Feb 2024 01:49:25 +0100 Subject: [PATCH] prototype solvers --- codes/solvers.py | 147 +++++++++++++++++------------------------------ 1 file changed, 54 insertions(+), 93 deletions(-) diff --git a/codes/solvers.py b/codes/solvers.py index ef2b49d..7e89786 100644 --- a/codes/solvers.py +++ b/codes/solvers.py @@ -1,106 +1,67 @@ -import numpy as np from . import utils -from .hf import updated_matrices, total_energy from functools import partial +import scipy -def optimize(mf, cost_function, optimizer, optimizer_kwargs): - _ = optimizer( - cost_function, - mf, - **optimizer_kwargs - ) - -def finite_system_cost(mf, model): - shape = mf.shape - mf = utils.flat_to_matrix(utils.real_to_complex(mf), shape) - model.rho, model.mf_k = updated_matrices(mf_k=mf, model=model) - delta_mf = model.mf_k - mf - return utils.complex_to_real(utils.matrix_to_flat(delta_mf)) - -def finite_system_solver(model, optimizer, cost_function, optimizer_kwargs): - """ - Real-space solver for finite systems. - - Parameters: - ----------- - model : model.Model - Physical model containting interacting and non-interacting Hamiltonian. - optimizer : function - Optimization function. - optimizer_kwargs : dict - Extra arguments passed to optimizer. +def kspace_costs(mfFlatReal, BaseMfModel): """ - model.mf_k = model.guess[()] - initial_mf = utils.complex_to_real(utils.matrix_to_flat(model.mf_k)) - partial_cost = partial(cost_function, model=model) - optimize(initial_mf, partial_cost, optimizer, optimizer_kwargs) - -def real_space_cost(mf, model, shape): - mf = utils.flat_to_matrix(utils.real_to_complex(mf), shape) - mf_dict = {} - for i, key in enumerate(model.guess.keys()): - mf_dict[key] = mf[i] - mf = utils.kgrid_hamiltonian( - nk=model.nk, - hk=utils.model2hk(mf_dict), - dim=model.dim, - hermitian=False - ) - model.rho, model.mf_k = updated_matrices(mf_k=mf, model=model) - delta_mf = model.mf_k - mf - delta_mf = utils.hk2tb_model(delta_mf, model.vectors, model.ks) - delta_mf = np.array([*delta_mf.values()]) - return utils.complex_to_real(utils.matrix_to_flat(delta_mf)) + Cost function for the mean-field model in k-space. -def rspace_solver(model, optimizer, cost_function, optimizer_kwargs): - """ - Real-space solver for infinite systems. + Parameters + ---------- + mfFlatReal : array_like + Mean-field correction to the non-interacting hamiltonian in k-space. + Converted from complex to stacked real array and flattened. + BaseMfModel : object + Mean-field model. + + Returns + ------- + array_like + Difference between the updated mean-field correction and the input. + + Notes + ----- + In general, the cost function does the following steps: + 1. Does something with the input. + 2. Calls the meanField and densityMatrix methods of the BaseMfModel. + 3. Calculates output based on 2. - Parameters: - ----------- - model : model.Model - Physical model containting interacting and non-interacting Hamiltonian. - optimizer : function - Optimization function. - optimizer_kwargs : dict - Extra arguments passed to optimizer. + In this case, the input and output is the mf correction in k-space. + Alternatively, it could also be a density matrix, or some real-space + parametrisation of the mean-field. """ - model.kgrid_evaluation(nk=model.nk) - initial_mf = np.array([*model.guess.values()]) - shape = initial_mf.shape - initial_mf = utils.complex_to_real(utils.matrix_to_flat(initial_mf)) - partial_cost = partial(cost_function, model=model, shape=shape) - optimize(initial_mf, partial_cost, optimizer, optimizer_kwargs) -def kspace_cost(mf, model): - mf = utils.flat_to_matrix(utils.real_to_complex(mf), model.mf_k.shape) - model.rho, model.mf_k = updated_matrices(mf_k=mf, model=model) - delta_mf = model.mf_k - mf - return utils.complex_to_real(utils.matrix_to_flat(delta_mf)) + mf = utils.flat_to_matrix( + utils.real_to_complex(mfFlatReal), BaseMfModel.H0_k.shape + ) + rho = BaseMfModel.densityMatrix(mf) + mfUpdated = BaseMfModel.meanField(rho) + mfUpdatedFlatReal = utils.complex_to_real(utils.matrix_to_flat(mfUpdated)) + return mfUpdatedFlatReal - mfFlatReal -def kspace_totalenergy_cost(mf, model): - mf = utils.flat_to_matrix(utils.real_to_complex(mf), model.mf_k.shape) - model.rho, model.mf_k = updated_matrices(mf_k=mf, model=model) - return total_energy( - model.hamiltonians_0 + model.mf_k, - model.rho, - ) +def kspace_solver(BaseMfModel, x0, optimizer=scipy.optimize.anderson, optimizer_kwargs={}): + ''' + A solver needs to do the following things: + 1. Prepare input x0 + 2. Prepare cost function + 3. Run optimizer + 4. Prepare result + 5. Return result + ''' + x0FlatReal = utils.complex_to_real(utils.matrix_to_flat(x0)) + f = partial(kspace_costs, BaseMfModel=BaseMfModel) + return optimizer(f, x0FlatReal, **optimizer_kwargs) -def kspace_solver(model, optimizer, cost_function, optimizer_kwargs): +def realSpace_cost(mfRealSpaceParams, BaseMfModel): """ - k-space solver. + Cost function for the mean-field (mf) model in real space. + The algorithm should go something like this: - Parameters: - ----------- - model : model.Model - Physical model containting interacting and non-interacting Hamiltonian. - optimizer : function - Optimization function. - optimizer_kwargs : dict - Extra arguments passed to optimizer. + 1. Convert the real-space parametrisation of the mf (mfRealSpaceParams) + to mf in k-space. + 2. Generate density matrix rho via densityMatrix(mf, BaseMfModel) + 3. Generate mfUpdated via meanField(rho, BaseMfModel). + 4. Convert mfUpdated to real-space parametrisation. + 5. Return the difference the initial and updated parametrisations """ - model.kgrid_evaluation(nk=model.nk) - initial_mf = model.mf_k - initial_mf = utils.complex_to_real(utils.matrix_to_flat(initial_mf)) - partial_cost = partial(cost_function, model=model) - optimize(initial_mf, partial_cost, optimizer, optimizer_kwargs) + return NotImplemented \ No newline at end of file -- GitLab