From 396802dafaca04e2536a5b63e58023b99c43280a Mon Sep 17 00:00:00 2001 From: Kostas Vilkelis <kostasvilkelis@gmail.com> Date: Tue, 7 May 2024 13:09:37 +0200 Subject: [PATCH] adjust imports in tests --- pymf/tests/test_graphene.py | 12 +++++++----- pymf/tests/test_hat.py | 22 +++++++++++++--------- pymf/tests/test_hubbard.py | 12 +++++++----- pymf/tests/test_params.py | 2 +- pymf/tests/test_zero_hint.py | 13 ++++++------- 5 files changed, 34 insertions(+), 27 deletions(-) diff --git a/pymf/tests/test_graphene.py b/pymf/tests/test_graphene.py index e28f30f..8369e4a 100644 --- a/pymf/tests/test_graphene.py +++ b/pymf/tests/test_graphene.py @@ -3,11 +3,13 @@ import numpy as np import pytest from pymf.kwant_helper import kwant_examples, utils -from pymf.model import Model -from pymf.solvers import solver -from pymf.tb.tb import add_tb -from pymf.tb.transforms import tb_to_khamvector -from pymf.tb.utils import generate_guess +from pymf import ( + Model, + solver, + tb_to_khamvector, + generate_guess, + add_tb, +) def compute_gap(tb, fermi_energy=0, nk=100): diff --git a/pymf/tests/test_hat.py b/pymf/tests/test_hat.py index 37af3ca..48cf011 100644 --- a/pymf/tests/test_hat.py +++ b/pymf/tests/test_hat.py @@ -1,17 +1,21 @@ # %% import numpy as np -from pymf.solvers import solver -from pymf.tb import utils -from pymf.model import Model -from pymf.tb.tb import add_tb, scale_tb -from pymf import mf -from pymf import observables import pytest +from pymf import ( + Model, + solver, + generate_guess, + scale_tb, + add_tb, + expectation_value, + construct_density_matrix, +) + # %% def total_energy(ham_tb, rho_tb): - return np.real(observables.expectation_value(rho_tb, ham_tb)) + return np.real(expectation_value(rho_tb, ham_tb)) # %% @@ -31,7 +35,7 @@ h_int_U0 = { @np.vectorize def mf_rescaled(alpha, mf0): hamiltonian = add_tb(h_0, scale_tb(mf0, alpha)) - rho, _ = mf.construct_density_matrix(hamiltonian, filling=filling, nk=nk) + rho, _ = construct_density_matrix(hamiltonian, filling=filling, nk=nk) hamiltonian = add_tb(h_0, scale_tb(mf0, np.sign(alpha))) return total_energy(hamiltonian, rho) @@ -39,7 +43,7 @@ def mf_rescaled(alpha, mf0): @pytest.mark.parametrize("seed", range(repeat_number)) def test_mexican_hat(seed): np.random.seed(seed) - guess = utils.generate_guess(frozenset(h_int_U0), len(h_int_U0[(0,)])) + guess = generate_guess(frozenset(h_int_U0), len(h_int_U0[(0,)])) _model = Model(h_0, h_int_U0, filling=filling) mf_sol_groundstate = solver( _model, mf_guess=guess, nk=nk, optimizer_kwargs={"M": 0} diff --git a/pymf/tests/test_hubbard.py b/pymf/tests/test_hubbard.py index f061034..9007d99 100644 --- a/pymf/tests/test_hubbard.py +++ b/pymf/tests/test_hubbard.py @@ -2,11 +2,13 @@ import numpy as np import pytest -from pymf.model import Model -from pymf.solvers import solver -from pymf.tb import utils -from pymf.tb.tb import add_tb from pymf.tests.test_graphene import compute_gap +from pymf import ( + Model, + solver, + generate_guess, + add_tb, +) repeat_number = 10 @@ -33,7 +35,7 @@ def gap_relation_hubbard(Us, nk, nk_dense, tol=1e-3): h_int = { (0,): U * np.kron(np.ones((2, 2)), np.eye(2)), } - guess = utils.generate_guess(frozenset(h_int), len(list(h_0.values())[0])) + guess = generate_guess(frozenset(h_int), len(list(h_0.values())[0])) full_model = Model(h_0, h_int, filling=2) mf_sol = solver(full_model, guess, nk=nk) _gap = compute_gap(add_tb(h_0, mf_sol), fermi_energy=0, nk=nk_dense) diff --git a/pymf/tests/test_params.py b/pymf/tests/test_params.py index 1b636b3..640b2b6 100644 --- a/pymf/tests/test_params.py +++ b/pymf/tests/test_params.py @@ -3,7 +3,7 @@ import pytest import numpy as np from pymf.params.rparams import rparams_to_tb, tb_to_rparams from pymf.tb.tb import compare_dicts -from pymf.tb.utils import generate_guess +from pymf import generate_guess repeat_number = 10 diff --git a/pymf/tests/test_zero_hint.py b/pymf/tests/test_zero_hint.py index 127eecb..70deb57 100644 --- a/pymf/tests/test_zero_hint.py +++ b/pymf/tests/test_zero_hint.py @@ -2,10 +2,9 @@ import numpy as np import pytest -from pymf.model import Model -from pymf.solvers import solver from pymf.tb import utils -from pymf.tb.tb import add_tb, compare_dicts +from pymf.tb.tb import compare_dicts +from pymf import Model, solver, generate_guess, add_tb, calculate_fermi_energy # %% repeat_number = 10 @@ -24,13 +23,13 @@ def test_zero_hint(seed): random_hopping_vecs = utils.generate_tb_keys(cutoff, dim) zero_key = tuple([0] * dim) - h_0_random = utils.generate_guess(random_hopping_vecs, ndof, scale=1) - h_int_only_phases = utils.generate_guess(random_hopping_vecs, ndof, scale=0) - guess = utils.generate_guess(random_hopping_vecs, ndof, scale=1) + h_0_random = generate_guess(random_hopping_vecs, ndof, scale=1) + h_int_only_phases = generate_guess(random_hopping_vecs, ndof, scale=0) + guess = generate_guess(random_hopping_vecs, ndof, scale=1) model = Model(h_0_random, h_int_only_phases, filling=filling) mf_sol = solver(model, guess, nk=40, optimizer_kwargs={"M": 0, "f_tol": 1e-10}) - h_fermi = utils.calculate_fermi_energy(mf_sol, filling=filling, nk=20) + h_fermi = calculate_fermi_energy(mf_sol, filling=filling, nk=20) mf_sol[zero_key] -= h_fermi * np.eye(mf_sol[zero_key].shape[0]) compare_dicts(add_tb(mf_sol, h_0_random), h_0_random, atol=1e-10) -- GitLab