diff --git a/docs/source/graphene_example.md b/docs/source/graphene_example.md index b55c69a79e7e91ef599c987c5657b2a6c88a36e7..74cc1469573b777a2d442c1de87b1d7ca8052135 100644 --- a/docs/source/graphene_example.md +++ b/docs/source/graphene_example.md @@ -33,6 +33,7 @@ We first translate this model from a Kwant system to a tight-binding dictionary. ```{code-cell} ipython3 import pymf.kwant_helper.kwant_examples as kwant_examples +import pymf.kwant_helper.utils as kwant_utils # Create translationally-invariant `kwant.Builder` graphene_builder, int_builder = kwant_examples.graphene_extended_hubbard() @@ -46,8 +47,6 @@ $$ Hubbardd $$ Once we have both the non-interacting and the interacting part, we can assign the parameters for the Hubbard interaction and then combine both, together with a filling, into the model. ```{code-cell} ipython3 -import pymf.kwant_helper.utils as kwant_utils - U=1 V=0.1 params = dict(U=U, V=V) @@ -71,7 +70,7 @@ We can now create a phase diagram of the gap of the interacting solution. In ord ```{code-cell} ipython3 def compute_gap(h, fermi_energy=0, nk=100): - kham = tb.transforms.tb_to_khamvector(h, nk, ks=None) + kham = pymf.tb_to_khamvector(h, nk, ks=None) vals = np.linalg.eigvalsh(kham) emax = np.max(vals[vals <= fermi_energy]) @@ -88,7 +87,7 @@ def gap_and_mf_sol(U, V, int_builder, h_0): _model = pymf.Model(h_0, h_int, filling=2) guess = pymf.generate_guess(frozenset(h_int), len(list(h_0.values())[0])) mf_sol = pymf.solver(_model, guess, nk=18, optimizer_kwargs={'M':0}) - gap = compute_gap(tb.tb.add_tb(h_0, mf_sol), fermi_energy=0, nk=300) + gap = compute_gap(pymf.add_tb(h_0, mf_sol), fermi_energy=0, nk=300) return gap, mf_sol ``` @@ -142,7 +141,7 @@ We choose a point in the phase diagram where we expect there to be a CDW phase a ```{code-cell} ipython3 cdw_list = [] for mf_sol in mf_sols.flatten(): - rho, _ = mf.construct_density_matrix(tb.tb.add_tb(h_0, mf_sol), filling=2, nk=40) + rho, _ = pymf.construct_density_matrix(pymf.add_tb(h_0, mf_sol), filling=2, nk=40) expectation_value = pymf.expectation_value(rho, cdw_order_parameter) cdw_list.append(expectation_value) ``` @@ -179,7 +178,7 @@ Then, similar to what we did in the CDW phase, we calculate the expectation valu ```{code-cell} ipython3 sdw_list = [] for mf_sol in mf_sols.flatten(): - rho, _ = mf.construct_density_matrix(tb.tb.add_tb(h_0, mf_sol), filling=2, nk=40) + rho, _ = pymf.construct_density_matrix(pymf.add_tb(h_0, mf_sol), filling=2, nk=40) expectation_values = [] for order_parameter in order_parameter_list: expectation_value = pymf.expectation_value(rho, order_parameter)