From b83a130294d2d10e87ec59dd90ebde0f783fa647 Mon Sep 17 00:00:00 2001
From: Kostas Vilkelis <kostasvilkelis@gmail.com>
Date: Tue, 7 May 2024 02:02:16 +0200
Subject: [PATCH] remove details from derivation

---
 docs/source/mf_details.md | 69 ---------------------------------------
 docs/source/mf_notes.md   |  6 ----
 2 files changed, 75 deletions(-)
 delete mode 100644 docs/source/mf_details.md

diff --git a/docs/source/mf_details.md b/docs/source/mf_details.md
deleted file mode 100644
index 7c5579b..0000000
--- a/docs/source/mf_details.md
+++ /dev/null
@@ -1,69 +0,0 @@
-# Details
-
-## Ground state definition
-Before we proceed, we must find a way to simply represent the ground state of the system.
-Assume there exists a non-interacting system $\hat{H}_\text{mf}$ whose groundstate closely resembles the interacting groundstate $| 0 \rangle$:
-
-$$
-| 0 \rangle \approx \Pi_{E_i \leq \mu } b_i^\dagger |\textrm{vac}\rangle,
-$$
-
-where $|\textrm{vac}\rangle$ is the vacuum state,  $b_i^\dagger$ is the creation operator of eigenstate $i$ with energy $E_i$ of $\hat{H}_\text{mf}$ and $\mu$ is the Fermi level.
-We relate the $b_i^\dagger$ particles to our original basis via a unitary transformation:
-
-$$
-c_i^\dagger = \sum_{k} U_{ik} b_k^\dagger.
-$$
-
-## Normal ordering and contractions
-
-Before proceeding, we define the *normal ordering* operation, $:ABC...:$, as a sorting of operators such that all the creation operators $b_i^\dagger$ below the Fermi level are to the left of the annihilation $b_i$ operators below the Fermi levels, and vice versa for the operators above the Fermi level.
-Whenever the normal ordered operators acts on the ground  state, it gives zero:
-
-$$
-:ABC...: | 0 \rangle = 0.
-$$
-
-Lastly, we define the *contraction* of two operators $A$ and $B$ as:
-
-$$
-\overline{AB} = \hat{A}\hat{B} - :AB:.
-$$
-
-## Expansion of the interaction term
-We utilize Wick's theorem to expand the interaction term:
-
-$$
-c_i^\dagger c_j^\dagger c_l c_k = :c_i^\dagger c_j^\dagger c_l c_k: \\
-+ \overline{c_i^\dagger c_k} :c_j^\dagger c_l: - \overline{c_i^\dagger c_l} :c_j^\dagger c_k: - \overline{c_j^\dagger c_k} :c_i^\dagger c_l: + \overline{c_j^\dagger c_l} :c_i^\dagger c_k: + \overline{c_i^\dagger c_j^\dagger} :c_l c_k: + \overline{c_l c_k} :c_i^\dagger c_j^\dagger: \\
-- \overline{c_i^\dagger c_l} \overline{c_j^\dagger c_k} +\overline{c_i^\dagger c_k} \overline{c_j^\dagger c_l}
-+\overline{c_i^\dagger c_j^\dagger} \overline{c_l c_k}.
-$$
-
-## Mean-field approximation to Wick terms
-
-We are now able to apply the mean-field approximation to the Wick terms.
-Lets first apply this to the first term in the expansion:
-
-$$
-:c_i^\dagger c_j^\dagger c_l c_k: = \langle :c_i^\dagger c_j^\dagger c_l c_k: \rangle + \delta:c_i^\dagger c_j^\dagger c_l c_k: \approx 0,
-$$
-
-where the first term in the second equality is zero due to the normal ordering operation and the second term is zero since we assume deviations from the mean-field ground state are small.
-
-Next, we apply the mean-field approximation to the second term in the expansion:
-
-$$
-\overline{c_i^\dagger c_k} :c_j^\dagger c_l: \approx \\
-\langle \overline{c_i^\dagger c_k} \rangle :c_j^\dagger c_l: + \overline{c_i^\dagger c_k} \langle :c_j^\dagger c_l: \rangle - \langle  \overline{c_i^\dagger c_k} \rangle \langle :c_j^\dagger c_l: \rangle = \\
-\langle c_i^\dagger c_k \rangle :c_j^\dagger c_l:.
-$$
-
-Repeating this for all terms in the expansion and collecting we find:
-
-$$
-c_i^\dagger c_j^\dagger c_l c_k \approx \\
-\langle c_i^\dagger c_k \rangle c_j^\dagger c_l - \langle c_i^\dagger c_l \rangle c_j^\dagger c_k - \langle c_j^\dagger c_k \rangle c_i^\dagger c_l + \langle c_j^\dagger c_l \rangle c_i^\dagger c_k + \langle c_i^\dagger c_j^\dagger \rangle c_l c_k +  \langle c_l c_k \rangle c_i^\dagger c_j^\dagger
-\\
-- \langle c_i^\dagger c_l \rangle \langle c_j^\dagger c_k \rangle + \langle c_i^\dagger c_k \rangle  \langle c_j^\dagger c_l \rangle  + \langle c_i^\dagger c_j^\dagger \rangle \langle  c_l c_k \rangle.
-$$
diff --git a/docs/source/mf_notes.md b/docs/source/mf_notes.md
index a8f55bf..39409ca 100644
--- a/docs/source/mf_notes.md
+++ b/docs/source/mf_notes.md
@@ -36,12 +36,6 @@ The ground-state density matrix reads:
 :::
 where $\beta = 1/ (k_B T)$ is the inverse temperature, $\mu$ is the chemical potential, and $\hat{N} = \sum_i c_i^\dagger c_i$ is the number operator.
 
-:::{admonition} Derivation of the mean-field Hamiltonian with Wicks theorem
-:class: dropdown info
-```{include} mf_details.md
-```
-:::
-
 ### Finite tight-binding grid
 
 To simplify the mean-field Hamiltonian, we assume a finite, normalised orthogonal tight-binding grid defined by the single-particle basis states:
-- 
GitLab