From fe3af47b31b17c64fd0e6dc84466efe4301537b2 Mon Sep 17 00:00:00 2001 From: antoniolrm <am@antoniomanesco.org> Date: Mon, 23 Oct 2023 15:20:39 +0200 Subject: [PATCH] delete unused functions --- codes/kwant_examples.py | 52 +---------------------------------------- 1 file changed, 1 insertion(+), 51 deletions(-) diff --git a/codes/kwant_examples.py b/codes/kwant_examples.py index 0b25865..fffc827 100644 --- a/codes/kwant_examples.py +++ b/codes/kwant_examples.py @@ -33,54 +33,4 @@ def graphene_extended_hubbard(): func_hop = nn_int, ) - return bulk_graphene, syst_V - -def hubbard_2D(U, N_ks): - square = kwant.lattice.square(a=1, norbs=2) - # create bulk system - bulk_hubbard = kwant.Builder(kwant.TranslationalSymmetry(*square.prim_vecs)) - bulk_hubbard[square.shape((lambda pos: True), (0, 0))] = 0 * np.eye(2) - # add hoppings between lattice points - bulk_hubbard[square.neighbors()] = -1 - - # use kwant wraparound to sample bulk k-space - wrapped_fsyst = kwant.wraparound.wraparound(bulk_hubbard).finalized() - - # return a hamiltonian for a given kx, ky - @np.vectorize - def hamiltonian_return(kx, ky, params={}): - ham = wrapped_fsyst.hamiltonian_submatrix(params={**params, **dict(k_x=kx, k_y=ky)}) - return ham - - N_k_axis = np.linspace(0, 2 * np.pi, N_ks, endpoint=False) - hamiltonians_0 = np.array( - [[hamiltonian_return(kx, ky) for kx in N_k_axis] for ky in N_k_axis] - ) - - # onsite interactions - v_int = U * np.ones((2,2)) - V = np.array([[v_int for i in range(N_ks)] for j in range(N_ks)]) - return hamiltonians_0, V - - -def hubbard_1D(U, N_ks): - chain = kwant.lattice.chain(a=1, norbs=2) - # create bulk system - bulk_hubbard = kwant.Builder(kwant.TranslationalSymmetry(*chain.prim_vecs)) - bulk_hubbard[chain.shape((lambda pos: True), (0,))] = 0 * s0 - # add hoppings between lattice points - bulk_hubbard[chain.neighbors()] = -1 - - - # return a hamiltonian for a given kx, ky - @np.vectorize - def hamiltonian_return(kx, params={}): - ham = wrapped_fsyst.hamiltonian_submatrix(params={**params, **dict(k_x=kx)}) - return ham - - N_k_axis = np.linspace(0, 2 * np.pi, N_ks, endpoint=False) - hamiltonians_0 = np.array( - [hamiltonian_return(kx) for kx in N_k_axis] - ) - - return hamiltonians_0, V + return bulk_graphene, syst_V \ No newline at end of file -- GitLab