# %% import numpy as np import pytest from pymf.tests.test_graphene import compute_gap from pymf import ( Model, solver, generate_guess, add_tb, ) repeat_number = 10 # %% def gap_relation_hubbard(Us, nk, nk_dense, tol=1e-3): """Gap relation for the Hubbard model. Parameters ---------- Us : np.array The Hubbard U parameter. nk : int The number of k-points to use in the grid. nk_dense : int The number of k-points to use in the dense grid for calculating the gap. tol : float The tolerance for the fitting of the gap. """ hopp = np.kron(np.array([[0, 1], [0, 0]]), np.eye(2)) h_0 = {(0,): hopp + hopp.T.conj(), (1,): hopp, (-1,): hopp.T.conj()} gaps = [] for U in Us: h_int = { (0,): U * np.kron(np.ones((2, 2)), np.eye(2)), } guess = generate_guess(frozenset(h_int), len(list(h_0.values())[0])) full_model = Model(h_0, h_int, filling=2) mf_sol = solver(full_model, guess, nk=nk) _gap = compute_gap(add_tb(h_0, mf_sol), fermi_energy=0, nk=nk_dense) gaps.append(_gap) fit_gap = np.polyfit(Us, np.array(gaps), 1)[0] assert np.abs(fit_gap - 1) < tol @pytest.mark.parametrize("seed", range(repeat_number)) def test_gap_hubbard(seed): """Test the gap prediction for the Hubbard model.""" np.random.seed(seed) Us = np.linspace(0.5, 5, 50, endpoint=True) gap_relation_hubbard(Us, nk=30, nk_dense=100, tol=1e-2)