Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
M
miniff
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
12
Issues
12
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Packages & Registries
Packages & Registries
Container Registry
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Quantum Tinkerer
miniff
Commits
2f09cad8
Commit
2f09cad8
authored
Sep 18, 2020
by
Artem Pulkin
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
ml: docstrings fixed
parent
d58c62dd
Pipeline
#43951
passed with stage
in 2 minutes and 27 seconds
Changes
2
Pipelines
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
6 additions
and
6 deletions
+6
-6
miniff/ml.py
miniff/ml.py
+5
-5
miniff/ml_util.py
miniff/ml_util.py
+1
-1
No files found.
miniff/ml.py
View file @
2f09cad8
...
...
@@ -913,7 +913,7 @@ class Normalization:
Returns
-------
result : torch.Tensor
The resulting
counts.
A 2D tensor `[n_samples, len(per_point_datasets)]` with
counts.
"""
return
torch
.
cat
(
tuple
(
i
.
mask
.
sum
(
dim
=
1
)[:,
None
]
...
...
@@ -1088,10 +1088,10 @@ class Normalization:
offset_features : bool
offset_charges : bool
If True, offsets energies, descriptors, and/or charges.
scale_energy :
bool
scale_features :
bool
scale_charges :
bool
scale_energy_gradients :
bool
scale_energy :
float
scale_features :
float
scale_charges :
float
scale_energy_gradients :
float
If set scales energies, descriptors, and/or charges to the value specified.
Returns
...
...
miniff/ml_util.py
View file @
2f09cad8
...
...
@@ -468,7 +468,7 @@ class SimpleClosure:
A function `loss(networks, data, criterion, **loss_kwargs)`
returning `loss_result` tuple.
dataset : Dataset
Default dataset to compute loss for.
Default dataset to compute
the
loss for.
criterion : torch.nn.Module
Loss criterion, defaults to MSE.
optimizer : torch.optim.Optimizer
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment