Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Quantum Sensing and Measurement
Quantum Sensing and Measurement
Commits
6cc51ef6
Commit
6cc51ef6
authored
Nov 26, 2020
by
T. van der Sar
Browse files
Update 4_ZPFs.md - typo
parent
ba114c2e
Pipeline
#47325
passed with stages
in 6 minutes and 36 seconds
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
src/4_ZPFs.md
View file @
6cc51ef6
...
...
@@ -129,19 +129,20 @@ where $\alpha$ is complex. The coherent state has the following properties:
-
Instead, the coherent state is an eigenstate of the annihilation operator $
\h
at{a}$.
??? Hint
Recall: the creation operator $
\h
at{a}^
\d
agger$ and the annihilation operator $
\h
at{a}$ have the following properties:
-
$
\h
at{a}|n
\r
angle =
\s
qrt{n}|n-1
\r
angle$, and
a
|0
\r
angle=0.
-
$
\h
at{a}|n
\r
angle =
\s
qrt{n}|n-1
\r
angle$, and
$
\h
at{a}
|0
\r
angle=0
$
.
-
$
\h
at{a}^
\d
agger|n
\r
angle =
\s
qrt{n+1}|n+1
\r
angle$.
-
$
\h
at{a}^
\d
agger
\h
at{a}|n
\r
angle = n|n
\r
angle$. Therefore, $
\h
at{a}^{
\d
agger}
\h
at{a}$ is called the number operator.
We see that
the harmonic oscillator Hamiltonian
can be written
as $
\h
at{H}=
\h
bar
\o
mega(
\h
at{a}^
\d
agger
\h
at{a}+0.5)$. Comparing this to
The number operator enables us to write
the harmonic oscillator Hamiltonian as $
\h
at{H}=
\h
bar
\o
mega(
\h
at{a}^
\d
agger
\h
at{a}+0.5)$. Comparing this to
$$
\h
at{H}=
\h
at{p}^2/2m+0.5m
\o
mega_0^2
\h
at{x}^2
$$, we can derive that
\h
at{H}=
\h
at{p}^2/2m+0.5m
\o
mega_0^2
\h
at{x}^2,
$$
\h
at{x} =
\s
qrt{
\f
rac{
\h
bar}{2m
\o
mega}}(
\h
at{a}^
\d
agger+
\h
at{a})
we can derive that
$$
\h
at{x} = x_
\t
ext{ZPF}(
\h
at{a}^
\d
agger+
\h
at{a})
$$
and
$$
\h
at{p} = i
\
s
qrt{
\f
rac{m
\o
mega
\h
bar}{2
}}(
\h
at{a}^
\d
agger-
\h
at{a})
\h
at{p} = i
\
f
rac{
\h
bar}{2 x_
\t
ext{ZPF
}}(
\h
at{a}^
\d
agger-
\h
at{a})
$$
-
There are an infinite number of possible coherent states since $
\a
lpha$ can vary continuously: $
\a
lpha = |
\a
lpha|e^{i
\t
heta}$.
-
All coherent states are Heisenberg-limited minimum uncertainty wavepackets that satisfy $
\s
igma_x
\s
igma_p =
\f
rac{
\h
bar}{2}$ (see exercise).
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment