Commit 8e038356 authored by Gary Steele's avatar Gary Steele
Browse files

fixed minus sign

parent dd4cdd49
Pipeline #46918 passed with stages
in 6 minutes and 27 seconds
......@@ -4,8 +4,8 @@ jupyter:
extension: .md
format_name: markdown
format_version: '1.0'
jupytext_version: 0.8.6
format_version: '1.2'
jupytext_version: 1.3.0
display_name: Python 3
language: python
......@@ -55,7 +55,7 @@ $$
where $p$ is just the 1D scalar momentum, not the momentum operator. We can also form $W(x,p)$ with $\phi(p)$, the Fourier transform of $\psi(x)$:
W(x,p) = \frac{1}{\pi \hbar} \int_{-\infty}^{+\infty} \phi^*(p+q) \phi(p-q) e^{2iqx/\hbar} dq
W(x,p) = \frac{1}{\pi \hbar} \int_{-\infty}^{+\infty} \phi^*(p+q) \phi(p-q) e^{-2iqx/\hbar} dq
How should we interpret the Wigner function? It must be something like a probability distribution, as the name suggests. If we integrate $W(x,p)$ over all $p$, we get $|\psi(x)|^2$:
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment