diff --git a/src/2_debye_model_solutions.md b/src/2_debye_model_solutions.md index 8026dbe6f9aa6170128ebd724a0ba2ff723cef85..a05442b6c44d99e03eb56cf6e3cd7aabcf01846a 100644 --- a/src/2_debye_model_solutions.md +++ b/src/2_debye_model_solutions.md @@ -83,8 +83,7 @@ For 3D we have that $N = 3\left(\frac{L}{2\pi}\right)^3\int d^3k = 3\left(\frac{ ### Exercise 2: Debye model in 2D. 1. See lecture notes. -2. -$$ +2. $$ \begin{align} E &= \int_{0}^{\omega_D}g(\omega)\hbar\omega\left(\frac{1}{e^{\beta\hbar\omega} - 1} + \frac{1}{2}\right)d\omega \\ &= \frac{L^2}{\pi v^2\hbar^2\beta^3}\int_{0}^{\beta\hbar\omega_D}\frac{x^2}{e^{x} - 1}dx + T \text{ independent constant}. @@ -94,21 +93,20 @@ $$ 4. In the low temperature limit we have that $\beta \rightarrow \infty$, hence $E \approx \frac{L^2}{\pi v^2\hbar^2\beta^3}\int_{0}^{\infty}\frac{x^2}{e^{x} - 1}dx + T \text{ independent constant} = \frac{2\zeta(3)L^2}{\pi v^2\hbar^2\beta^3} + T \text{ independent constant}$. Finally $C = \frac{6\zeta(3)k^3_BL^2}{\pi v^2\hbar^2}T^2$. We used the fact that $\int_{0}^{\infty}\frac{x^2}{e^{x} - 1}dx = 2\zeta(3)$ where $\zeta$ is the Riemann zeta function. ### Exercise 3: Different phonon modes. -1. -$$ +1. $$ g(\omega) = \sum_{\text{polarizations}}\frac{dN}{dk}\frac{dk}{d\omega} = \left(\frac{L}{2\pi}\right)^3\sum_{\text{polarizations}}4\pi k^2\frac{dk}{d\omega} = \frac{L^3}{2\pi^2}\left(\frac{2}{v_\perp^3} + \frac{1}{v_\parallel^3}\right)\omega^2 $$ - $$ -E = \int_{0}^{\omega_D}g(\omega)\hbar\omega\left(\frac{1}{e^{\beta\hbar\omega} - 1} + \frac{1}{2}\right)d\omega = \frac{L^3}{2\pi^2\hbar^3\beta^4}\left(\frac{2}{v_\perp^3} + \frac{1}{v_\parallel^3}\right)\int_{0}^{\beta\hbar\omega_D}\frac{x^3}{e^{x} - 1}dx + T \text{ independent constant}. +E = \int_{0}^{\omega_D}g(\omega)\hbar\omega\left(\frac{1}{e^{\beta\hbar\omega} - 1} + \frac{1}{2}\right)d\omega = \frac{L^3}{2\pi^2\hbar^3\beta^4}\left(\frac{2}{v_\perp^3} + \frac{1}{v_\parallel^3}\right)\int_{0}^{\beta\hbar\omega_D}\frac{x^3}{e^{x} - 1}dx + C. $$ 2. Note that we can get $\omega_D$ from $3N = \int_{0}^{\omega_D}g(\omega)$ so everything cancels as usual and we are left with the Dulong-Petit law $C = 3Nk_B$. 3. In the low temperature limit we have that $C \sim \frac{2\pi^2k_B^4L^3}{15\hbar^3}\left(\frac{2}{v_\perp^3} + \frac{1}{v_\parallel^3}\right)T^3$. We used that $\int_{0}^{\infty}\frac{x^3}{e^{x} - 1}dx = \frac{\pi^4}{15}$. ### Exercise 4: Anisotropic sound velocities. + $$ -E = 3\left(\frac{L}{2\pi}\right)^3\int d^3k\hbar\omega(\mathbf{k})\left(n_B(\beta\hbar\omega(\mathbf{k})) + \frac{1}{2}\right) = 3\left(\frac{L}{2\pi}\right)^3\frac{1}{v_xv_yv_z}\int d^3\kappa\frac{\hbar\kappa}{e^{\beta\hbar\kappa} - 1} + T \text{ independent part}, +E = 3\left(\frac{L}{2\pi}\right)^3\int d^3k\hbar\omega(\mathbf{k})\left(n_B(\beta\hbar\omega(\mathbf{k})) + \frac{1}{2}\right) = 3\left(\frac{L}{2\pi}\right)^3\frac{1}{v_xv_yv_z}\int d^3\kappa\frac{\hbar\kappa}{e^{\beta\hbar\kappa} - 1} + C, $$ where we used the substitutions $\kappa_x = k_xv_x,\kappa_y = k_yv_y, \kappa_z = k_zv_z$. Finally