From 066c2c89b9f3124787c1fd368781d8aa3be5e39f Mon Sep 17 00:00:00 2001 From: "T. van der Sar" <t.vandersar@tudelft.nl> Date: Mon, 10 Feb 2020 13:30:43 +0000 Subject: [PATCH] Update 1_einstein_model.md - polishing --- src/1_einstein_model.md | 29 ++++++++++++++++++----------- 1 file changed, 18 insertions(+), 11 deletions(-) diff --git a/src/1_einstein_model.md b/src/1_einstein_model.md index c42406cf..be7b4fca 100644 --- a/src/1_einstein_model.md +++ b/src/1_einstein_model.md @@ -126,7 +126,7 @@ So we see that: ## Quantum oscillator -This can be explained by considering a _quantum_ harmonic oscillator: +This can be explained by considering each atom as a _quantum_ harmonic oscillator: ```python import math @@ -188,14 +188,14 @@ for i in range(no_states): horizontalalignment='center', fontsize=14) if i==0: - ax.text(x[0]+1/4, h0_ener(i)/4, r'$\frac{\hbar\omega}{2}$', + ax.text(x[0]+1/4, h0_ener(i)/4, r'$\frac{\hbar\omega_0}{2}$', horizontalalignment='center', fontsize=14) ax.annotate("", xy=(x[0]+1/2, h0_ener(i)-1/2), xytext=(x[0]+1/2, h0_ener(i)), arrowprops=dict(arrowstyle="<->")) elif i==1: - ax.text(x[0]+1/4, h0_ener(i-1)+1/3, r'$\hbar\omega$', + ax.text(x[0]+1/4, h0_ener(i-1)+1/3, r'$\hbar\omega_0$', horizontalalignment='center', fontsize=14) ax.annotate("", xy=(x[0]+1/2, h0_ener(i)), @@ -219,19 +219,26 @@ ax.set_yticklabels([]) ax.set_xticklabels([]) # Set x and y labels -ax.set_xlabel('X '+ r'($\sqrt{\hbar/m\omega}$)', fontsize=12) -ax.set_ylabel('E '+ r'($\hbar\omega$)', fontsize=12) +ax.set_xlabel('X '+ r'($\sqrt{\hbar/m\omega_0}$)', fontsize=12) +ax.set_ylabel('E '+ r'($\hbar\omega_0$)', fontsize=12) ax.yaxis.set_label_coords(0.5,1) ``` +The quantum harmonic oscillator has an energy spectrum given by +$$\varepsilon_n=\left(n+\frac{1}{2}\right)\hbar\omega_0$$ +where $\omega_0$ is the eigenfrequency of the oscillator. -$$\varepsilon_n=\left(n+\frac{1}{2}\right)\hbar\omega$$ - -Phonons are bosons $\Rightarrow$ they follow Bose-Einstein statistics. +What is the thermal occupation and corresponding thermal energy of this oscillator? A quantum harmonic oscillator is a bosonic mode $\Rightarrow$ its occupation is described by Bose-Einstein statistics. $$ -n(\omega,T)=\frac{1}{ {\rm e}^{\hbar\omega/k_{\rm B}T}-1}\Rightarrow\bar{\varepsilon}=\frac{1}{2}\hbar\omega+\frac{\hbar\omega}{ {\rm e}^{\hbar\omega/k_{\rm B}T}-1} +n(\omega,T)=\frac{1}{ {\rm e}^{\hbar\omega/k_{\rm B}T}-1} $$ +The Bose-Einstein distribution describes the occupation probability of a state at a given energy $\hbar \omega$. It is plotted as a function of energy below +Using the Bose-Einstein function, we can calculate the the energy stored in the oscillator +$$ +\bar{\varepsilon}=\frac{1}{2}\hbar\omega_0+\frac{\hbar\omega_0}{ {\rm e}^{\hbar\omega_0/k_{\rm B}T}-1} +$$ +which we plot as a function of temperature below. ```python fig, (ax, ax2) = pyplot.subplots(ncols=2, figsize=(10, 5)) omega = np.linspace(0.1, 2) @@ -257,9 +264,9 @@ ax2.set_yticklabels([r'$\hbar\omega/2$']) draw_classic_axes(ax2, xlabeloffset=.15) ``` -The term $\frac{1}{2}\hbar\omega$ is the _zero point energy_, which follows from the uncertainty principle. +The term $\frac{1}{2}\hbar\omega_0$ is the _zero point energy_, which follows from the uncertainty principle. -In order to calculate the heat capacity per atom $C$, we need to differentiate $\bar{\varepsilon}$ to $T$. +To calculate the heat capacity per atom $C$, we need to differentiate $\bar{\varepsilon}$ to $T$. $$ \begin{multline} C = \frac{\partial\bar{\varepsilon}}{\partial T} -- GitLab