diff --git a/src/10_xray_solutions.md b/src/10_xray_solutions.md
index d217d6afc87c8ee4a9d6607fe41080bb7dcfcb59..6c09df01b7abdf4277dbb26dd34278808ca10918 100644
--- a/src/10_xray_solutions.md
+++ b/src/10_xray_solutions.md
@@ -149,8 +149,7 @@ $S(\mathbf{G}) = \sum_j f_j e^{i \mathbf{G} \cdot \mathbf{r_j}} = f(1 + e^{i \pi
 Solving for $h$, $k$, and $l$ results in 
 
 $$
-S(\mathbf{G}) = 
-\begin{cases}
+S(\mathbf{G}) = \begin{cases}
     2f, \: \text{if $h+k+l$ is even}\\
     0, \: \text{if $h+k+l$ is odd}.
 \end{cases}
@@ -162,8 +161,7 @@ Thus if $h+k+l$ is odd, diffraction peaks dissapear
 Let $f_1 \neq f_2$, then
 
 $$
-S(\mathbf{G}) = 
-\begin{cases}
+S(\mathbf{G}) = \begin{cases}
 f_1 + f_2, \text{if $h+k+l$ is even}\\
 f_1 - f_2, \text{if $h+k+l$ is odd}
 \end{cases}