diff --git a/src/10_xray_solutions.md b/src/10_xray_solutions.md index d217d6afc87c8ee4a9d6607fe41080bb7dcfcb59..6c09df01b7abdf4277dbb26dd34278808ca10918 100644 --- a/src/10_xray_solutions.md +++ b/src/10_xray_solutions.md @@ -149,8 +149,7 @@ $S(\mathbf{G}) = \sum_j f_j e^{i \mathbf{G} \cdot \mathbf{r_j}} = f(1 + e^{i \pi Solving for $h$, $k$, and $l$ results in $$ -S(\mathbf{G}) = -\begin{cases} +S(\mathbf{G}) = \begin{cases} 2f, \: \text{if $h+k+l$ is even}\\ 0, \: \text{if $h+k+l$ is odd}. \end{cases} @@ -162,8 +161,7 @@ Thus if $h+k+l$ is odd, diffraction peaks dissapear Let $f_1 \neq f_2$, then $$ -S(\mathbf{G}) = -\begin{cases} +S(\mathbf{G}) = \begin{cases} f_1 + f_2, \text{if $h+k+l$ is even}\\ f_1 - f_2, \text{if $h+k+l$ is odd} \end{cases}