From 0adad18224b0f27b56f53ae95c31bf186c503fa0 Mon Sep 17 00:00:00 2001 From: Anton Akhmerov <anton.akhmerov@gmail.com> Date: Thu, 18 Mar 2021 23:55:30 +0000 Subject: [PATCH] is it cases? --- src/10_xray_solutions.md | 6 ++---- 1 file changed, 2 insertions(+), 4 deletions(-) diff --git a/src/10_xray_solutions.md b/src/10_xray_solutions.md index d217d6af..6c09df01 100644 --- a/src/10_xray_solutions.md +++ b/src/10_xray_solutions.md @@ -149,8 +149,7 @@ $S(\mathbf{G}) = \sum_j f_j e^{i \mathbf{G} \cdot \mathbf{r_j}} = f(1 + e^{i \pi Solving for $h$, $k$, and $l$ results in $$ -S(\mathbf{G}) = -\begin{cases} +S(\mathbf{G}) = \begin{cases} 2f, \: \text{if $h+k+l$ is even}\\ 0, \: \text{if $h+k+l$ is odd}. \end{cases} @@ -162,8 +161,7 @@ Thus if $h+k+l$ is odd, diffraction peaks dissapear Let $f_1 \neq f_2$, then $$ -S(\mathbf{G}) = -\begin{cases} +S(\mathbf{G}) = \begin{cases} f_1 + f_2, \text{if $h+k+l$ is even}\\ f_1 - f_2, \text{if $h+k+l$ is odd} \end{cases} -- GitLab