From 0adad18224b0f27b56f53ae95c31bf186c503fa0 Mon Sep 17 00:00:00 2001
From: Anton Akhmerov <anton.akhmerov@gmail.com>
Date: Thu, 18 Mar 2021 23:55:30 +0000
Subject: [PATCH] is it cases?

---
 src/10_xray_solutions.md | 6 ++----
 1 file changed, 2 insertions(+), 4 deletions(-)

diff --git a/src/10_xray_solutions.md b/src/10_xray_solutions.md
index d217d6af..6c09df01 100644
--- a/src/10_xray_solutions.md
+++ b/src/10_xray_solutions.md
@@ -149,8 +149,7 @@ $S(\mathbf{G}) = \sum_j f_j e^{i \mathbf{G} \cdot \mathbf{r_j}} = f(1 + e^{i \pi
 Solving for $h$, $k$, and $l$ results in 
 
 $$
-S(\mathbf{G}) = 
-\begin{cases}
+S(\mathbf{G}) = \begin{cases}
     2f, \: \text{if $h+k+l$ is even}\\
     0, \: \text{if $h+k+l$ is odd}.
 \end{cases}
@@ -162,8 +161,7 @@ Thus if $h+k+l$ is odd, diffraction peaks dissapear
 Let $f_1 \neq f_2$, then
 
 $$
-S(\mathbf{G}) = 
-\begin{cases}
+S(\mathbf{G}) = \begin{cases}
 f_1 + f_2, \text{if $h+k+l$ is even}\\
 f_1 - f_2, \text{if $h+k+l$ is odd}
 \end{cases}       
-- 
GitLab