From 0d599e79997e3b4c4cf3d71c47ca9f1629514fba Mon Sep 17 00:00:00 2001 From: Anton Akhmerov <anton.akhmerov@gmail.com> Date: Mon, 24 Feb 2020 22:03:59 +0100 Subject: [PATCH] unicodize --- src/5_atoms_and_lcao_solutions.md | 34 +++++++++++++------------------ 1 file changed, 14 insertions(+), 20 deletions(-) diff --git a/src/5_atoms_and_lcao_solutions.md b/src/5_atoms_and_lcao_solutions.md index 0e42add8..43e8a270 100644 --- a/src/5_atoms_and_lcao_solutions.md +++ b/src/5_atoms_and_lcao_solutions.md @@ -20,69 +20,63 @@ 1. $$ \psi(x) = \begin{cases} - &\sqrt{\kappa}e^{\kappa(x-x_1)}, x<x_1\\ - &\sqrt{\kappa}e^{-\kappa(x-x_1)}, x>x_1 + &\sqrt{κ}e^{κ(x-x_1)}, x<x_1\\ + &\sqrt{κ}e^{-κ(x-x_1)}, x>x_1 \end{cases} $$ - Where $\kappa = \sqrt{\frac{-2mE}{\hbar^2}} = \frac{mV_0}{\hbar^2}$. + Where $κ = \sqrt{\frac{-2mE}{ħ^2}} = \frac{mV_0}{ħ^2}$. - The energy is given by $\epsilon_1 = \epsilon_2 = -\frac{mV_0}{\hbar^2}$ + The energy is given by $ϵ_1 = ϵ_2 = -\frac{mV_0}{ħ^2}$ The wave function of a single delta peak is given by $$ - \psi_1(x) = \frac{\sqrt{mV_0}}{\hbar}e^{-\frac{mV_0}{\hbar^2}|x-x_1|} + \psi_1(x) = \frac{\sqrt{mV_0}}{ħ}e^{-\frac{mV_0}{ħ^2}|x-x_1|} $$ $\psi_2(x)$ can be found by replacing $x_1$ by $x_2$ 2. $$ - H = -\frac{mV_0^2}{\hbar^2}\begin{pmatrix} - 1/2+\exp(-\frac{mV_0}{\hbar^2}(x_2-x_1)) & - \exp(\frac{mV_0}{\hbar^2}(x_2-x_1))\\ - \exp(-\frac{mV_0}{\hbar^2}(x_2-x_1)) & - 1/2+\exp(+\frac{mV_0}{\hbar^2}(x_2-x_1)) + H = -\frac{mV_0^2}{ħ^2}\begin{pmatrix} + 1/2+\exp(-\frac{mV_0}{ħ^2}(x_2-x_1)) & + \exp(\frac{mV_0}{ħ^2}(x_2-x_1))\\ + \exp(-\frac{mV_0}{ħ^2}(x_2-x_1)) & + 1/2+\exp(+\frac{mV_0}{ħ^2}(x_2-x_1)) \end{pmatrix} $$ 3. $$ - \epsilon_{\pm} = \beta(3/2+\cosh{2\alpha}+2\cosh{\alpha}\pm \cosh{\alpha}) + ϵ_{\pm} = \beta(3/2+\cosh{2α}+2\cosh{α}\pm \cosh{α}) $$ - Where $\beta = -\frac{mV_0^2}{\hbar^2}$ and $\alpha = \frac{mV_0}{\hbar^2}(x_2-x_1)$ + Where $\beta = -\frac{mV_0^2}{ħ^2}$ and $α = \frac{mV_0}{ħ^2}(x_2-x_1)$ ### Question 3 1. $$ - H_{\mathcal{E}} = eRE + H_{\mathcal{E}} = eR\mathcal{E}, $$ - -Where R is the distance between the negatively charged electrons and the positive charged nuclei. +where R is the distance between the negatively charged electrons and the positive charged nuclei. 2. - $$ H_{eff} = \begin{pmatrix} E_0 - \gamma & -t\\ -t & E_0 + \gamma \end{pmatrix} $$ - Where $\gamma = e d \mathcal{E}/2$ and where we have used that $$⟨1|H_{eff}|1⟩ = -e d \mathcal{E}/2⟨1|1⟩ = e d \mathcal{E}/2$$ 3. The eigenstates of the Hamiltonian are given by: - $$ E_{\pm} = E_0\pm\sqrt{t^2+\gamma^2} $$ - The ground state wave function is: - $$ \begin{split} |\psi⟩ &= \frac{t}{\sqrt{(\gamma+\sqrt{\gamma^2+t^2})^2+t^2}}\begin{pmatrix} -- GitLab