diff --git a/src/1_einstein_model.md b/src/1_einstein_model.md index 29b8b94d4e4f0da1841dd34fa44940d397fb5cc0..d7171d9e5ae8e9c9da41de1c63c8c97057a76cc4 100644 --- a/src/1_einstein_model.md +++ b/src/1_einstein_model.md @@ -78,7 +78,7 @@ fig = go.Figure( title='Heat capacity of chemical elements', autosize=True, yaxis=go.layout.YAxis( - title='$C/k_B$', + title='$C/k_B [-]$', tick0=1, dtick=2, ), @@ -108,9 +108,10 @@ c = [0.384, 0.578, 0.683, 0.798, 0.928, 1.069, 1.343, 1.656, 1.833, 2.671, 2.720 fig, ax = pyplot.subplots() ax.scatter(T, c) -ax.set_xlabel('$T[K]$') -ax.set_ylabel('$C/k_B$') -ax.set_ylim((0, 3)); +ax.set_xlabel('$T [K]$') +ax.set_ylabel('$C/k_B [-]$') +ax.set_ylim((0, 3)) +ax.set_title('Heat capacity of diamond as a function of the temperature'); ``` We observe that: @@ -254,7 +255,7 @@ xline = [1, 1]; yline = [0, 1.5]; fig, (ax, ax2) = pyplot.subplots(ncols=2, figsize=(10, 5)) omega = np.linspace(0.1, 2) -ax.plot(omega, 1/(np.exp(omega) - 1), '-', xline, yline, 'r--') +ax.plot(omega, 1/(np.exp(omega) - 1), '-') ax.set_ylim(0, top=3) ax.set_xlim(left=0) ax.set_xlabel('$\hbar \omega$') @@ -263,10 +264,11 @@ ax.set_xticklabels(['$0$']) ax.set_ylabel('$n_{BE}(\omega,T)$') ax.set_yticks([0,1, 2]) ax.set_yticklabels(['$0$','$1$', '$2$']) +ax.set_title(r'$n_{BE}$ as a function of $\hbar \omega$') # draw_classic_axes(ax, xlabeloffset=.2) # ax.text(1.05, 0.95, r'$\hbar \omega = k_{\rm B}T$', ha='left', color='r'); temps = np.linspace(0.01, 2) -ax2.plot(temps, 1/2 + 1/(np.exp(1/temps)-1), '-', [1,1], [0, 1.1], 'r--') +ax2.plot(temps, 1/2 + 1/(np.exp(1/temps)-1), '-', [0.55,0.55], [0, 0.7], 'r--') ax2.set_ylim(bottom=0) ax2.set_xlabel('$k_B T$') ax2.set_xticks([0]) @@ -274,12 +276,11 @@ ax2.set_xticklabels(['$0$']) ax2.set_ylabel(r"$\langle E \rangle$") ax2.set_yticks([1/2]) ax2.set_yticklabels([r'$\hbar\omega_0/2$']) +ax2.set_title(r'$\langle E \rangle$ as a function of $T$') draw_classic_axes(ax2, xlabeloffset=.15) -ax2.text(1.05, 0.65, r'$k_{\rm B}T=\hbar \omega_0$', ha='left', color='r'); +ax2.text(0.65, 0.35, r'$k_{\rm B}T=\hbar \omega_0$', ha='left', color='r'); ``` -<!--- Still need to make the expression for the temperature correct in the figure above --> - Having found an expression for $\langle E \rangle$ as a function of $T$, we can now calculate the heat capacity per atom $C$ explicitly. To do so, we need to differentiate $\langle E \rangle$ with respect to $T$. $$ \begin{align} @@ -306,10 +307,11 @@ xline = [1, 1]; yline = [0, 1.1]; temps = np.linspace(0.01, 1.5, 500) fig, ax = pyplot.subplots() - -ax.plot(temps, c_einstein(temps)/3, '-', xline, yline, 'r--') +pyplot.hlines([1], 0, 1.5, linestyles='dashed', label = r'Classical') +ax.plot(temps, c_einstein(temps)/3, '-', label = r'Einstein model') +ax.plot(xline, yline, 'r--') ax.fill_between(temps, c_einstein(temps)/3, 1, alpha=0.5) - +ax.set_title('Heat capacity for the Einstein model and the equipartition theorem') ax.set_ylim(bottom=0, top=1.2) ax.set_xlabel('$T$') ax.set_ylabel(r'$C$') @@ -317,9 +319,10 @@ ax.set_xticks([0]) ax.set_xticklabels(['$0$']) ax.set_yticks([1]) ax.set_yticklabels(['$k_B$']) -pyplot.hlines([1], 0, 1.5, linestyles='dashed') draw_classic_axes(ax) -ax.text(1.01, 0.5, r'$T= T_E= \hbar \omega_0/k_{\rm B}$', ha='left', color='r'); +ax.text(1.01, 0.5, r'$T= T_E= \hbar \omega_0/k_{\rm B}$', ha='left', color='r') +ax.legend(loc = 'lower right') +fig.show(); ``` The horizontal dashed line is the classical value, $k_{\rm B}$. The shaded area is the difference between the classical value $k_B$ and the value predicted by the Einstein model. Integrating over the shaded area yields $\frac{1}{2}\hbar\omega_0$, which is the zero-point energy of the oscillator, which cannot be extracted from the system. The vertical dashed line depicts the Einstein temperature $T_E$, at which the heat capacity $C \approx 0.92 k_B$. @@ -337,11 +340,11 @@ T_E = fit[0][0] delta_T_E = np.sqrt(fit[1][0, 0]) fig, ax = pyplot.subplots() -ax.scatter(T, c) +ax.scatter(T, c, label = r'Experimental value') temps = np.linspace(10, T[-1], 100) -ax.plot(temps, c_einstein(temps, T_E)); - +ax.plot(temps, c_einstein(temps, T_E), label = r'Einstein model'); +ax.set_title(r'Emperical and predicted heat capacity of diamond as a function of $T$') ax.set_xlabel('$T[K]$') ax.set_ylabel('$C/k_B$') ax.set_ylim((0, 3)); @@ -362,11 +365,11 @@ Although the Einstein model fits the experimental data quite well, it still devi ### Quick warm-up exercises -1. Sketch the Bose Einstein distribution as a function of $\omega$ for two different values of $T$ -2. Sketch the heat capacity of an Einstein solid for two different values of $T_E$ -3. What is the high-temperature heat capacity of an atom in a solid with two momentum and two spatial coordinate degrees of freedom? -4. Why is the heat capacity per atom of an ideal gas typically $3k_B/2$ and not $3 k_B$? -5. Explain which behaviour of the function $1/(e^{-\hbar\omega/k_BT}-1)$ tells you it is not the Bose Einstein distribution. +1. Why is the heat capacity per atom of an ideal gas typically $3k_B/2$ and not $3 k_B$? +2. What is the high-temperature heat capacity of an atom in a solid with two momentum and two spatial coordinate degrees of freedom? +3. Sketch the Bose Einstein distribution as a function of $\omega$ for two different values of $T$ +4. Explain which behaviour of the function $1/(e^{-\hbar\omega/k_BT}-1)$ tells you it is not the Bose Einstein distribution. +5. Sketch the heat capacity of an Einstein solid for two different values of $T_E$ ### Exercise 1: Heat capacity of a classical oscillator. @@ -383,36 +386,34 @@ $$ $$ Z = \int_{-\infty}^{\infty}dp \int_{-\infty}^{\infty} dx e^{-\beta H(p,x)}. $$ +where $\beta = 1/k_B T$ 2. Using the solution of 1., compute the expectation value of the energy. -3. Compute the heat capacity. Check that you get the law of Dulong-Petit but with a different prefactor. -4. Explain the difference in the prefactor by considering the number of degrees of freedom. +3. Calculate the heat capacity. Does it depend on the temperature? ### Exercise 2: Quantum harmonic oscillator -Consider a 1D quantum harmonic oscillator. Its eigenstates are: +Consider a 1D quantum harmonic oscillator. Its energy eigenvalues are: $$ E_n = \hbar\omega(n+\frac{1}{2}), $$ -1. Sketch the wave function of this harmonic oscillator for $n=3$. -2. Compute the quantum partition function using the following expression: +1. Compute the partition function using the following expression: $$ Z = \sum_j e^{-\beta E_j}. $$ -3. Using the partition function, compute the expectation value of the energy. -4. Compute the heat capacity. Check that in the high temperature limit you get the same result as in Exercise 1.3. - - What temperature can be considered high? - - What is the expectation value of $n$? +2. Using the partition function found in 2.1, compute the expected value of the energy. +3. Compute the heat capacity. Check that in the high temperature limit you get the same result as in Exercise 1.3. +4. Plot the found heat capacity and roughly indicate in the plot where the Einstein temperature is. +5. What is the expected value of $n$? ### Exercise 3: Total heat capacity of a diatomic material - -We consider a crystal of lithium, which consists of the [two stable isotopes](https://en.wikipedia.org/wiki/Isotopes_of_lithium) $^6$Li (7.5%) and $^7$Li (92.5%) in their natural abundance. Let us extend the Einstein model to take into account the different masses of these different isotopes. +One of the assumptions of the Einstein model states that every atom in a solid oscillates with the same frequency $\omega_0$. However, if the solid contains different types of atoms, it is unreasonable to assume that the atoms oscillate with the same frequency. One example of such a solid is a lithium crystal, which consists of the [two stable isotopes](https://en.wikipedia.org/wiki/Isotopes_of_lithium) $^6$Li (7.5%) and $^7$Li (92.5%) in their natural abundance. Let us extend the Einstein model to take into account the different masses of these different isotopes. 1. Assume that the strength of the returning force $k$ experienced by each atom is the same. What is the difference in the oscillation frequencies of the two different isotopes in the lithium crystal? -2. Write down the total energy stored in the vibrations of the atoms of the lithium crystal, assuming that all $^6$Li atoms are in $n=2$ vibrational state and all $^7$Li atoms are in $n=4$ vibrational state. -3. Write down the total energy stored in the vibrations of the atoms in the lithium crystal at a temperature $T$ by modifying the Einstein model. +2. Write down the total energy stored in the vibrations of the atoms of the lithium crystal, assuming that all $^6$Li atoms are in $n=2$ vibrational mode and all $^7$Li atoms are in $n=4$ vibrational mode. +3. In the case where the osccilators can occupy any vibrational mode, write down the total energy stored in the vibrations of the atoms in the lithium crystal at a temperature $T$ by modifying the Einstein model. 4. Compute the heat capacity of the lithium crystal as a function of $T$.