From 2b08403958bbf804b7067b6dca8f0c68050bd48c Mon Sep 17 00:00:00 2001 From: Bowy La Riviere <b.m.lariviere@student.tudelft.nl> Date: Sun, 14 Mar 2021 14:32:03 +0000 Subject: [PATCH] Apply 17 suggestion(s) to 1 file(s) --- src/10_xray.md | 48 +++++++++++++++++++++++------------------------- 1 file changed, 23 insertions(+), 25 deletions(-) diff --git a/src/10_xray.md b/src/10_xray.md index 8e72ef0a..ea986823 100644 --- a/src/10_xray.md +++ b/src/10_xray.md @@ -265,16 +265,15 @@ fig.show() ``` -Despite us knowing that both real-space and reciprocal lattice vectors are somehow related to eachother, we do not yet know their exact relation. -We do however know that they are subject to +To find the reciprocal lattice vectors, we use the relation $$ \mathbf{a_i}\cdot\mathbf{b_j}=2\pi\delta_{ij}. $$ -This tells us that +The relation leads to several simple conclusions. +One such conclusion is the orthogonality between several real-space and reciprocal lattice vectors: $$ -\mathbf{a}_1\cdot\mathbf{b}_2=\mathbf{a}_2\cdot\mathbf{b}_1=0, +\mathbf{a}_1\cdot\mathbf{b}_2=\mathbf{a}_2\cdot\mathbf{b}_1=0. $$ -showing us that $\mathbf{a}_1$ is perpendicular to $\mathbf{b}_2$ and $\mathbf{a}_2$ is perpendicular to $\mathbf{b}_1$. We also find $$ \mathbf{a}_1\cdot\mathbf{b}_1=\mathbf{a}_2\cdot\mathbf{b}_2=2\pi. @@ -284,16 +283,16 @@ $$ \lvert \mathbf{a}_1 \rvert \lvert \mathbf{b}_1 \rvert =\frac{2\pi}{\cos(\theta_1)} \:\: \text{and} \:\: \lvert \mathbf{a}_2 \rvert \lvert \mathbf{b}_2 \rvert =\frac{2\pi}{\cos(\theta_2)}, $$ where $\theta_i$ is the angle between the vectors $\mathbf{a}_i$ and $\mathbf{b}_i$. -To find the angles $\theta_1$ and $\theta_2$, we use the fact that the angle between $\mathbf{a}_1$ and $\mathbf{a}_2$ is $60^\circ$,that $\mathbf{a}_1 \perp \mathbf{b}_2$ and that $\mathbf{a}_2 \perp \mathbf{b}_1$. -From this we conclude that $\theta_1 = \theta_2 = 30^\circ$. +To find the angles $\theta_1$ and $\theta_2$, we use the orthogonality relations above and the fact that the angle between $\mathbf{a}_1$ and $\mathbf{a}_2$ is $60^\circ$. +From this we conclude that $\theta_1 = \theta_2 = 30^\circ$.``` Because $\lvert \mathbf{a}_1 \rvert = \lvert \mathbf{a}_2 \rvert = a$, we find $$ \lvert \mathbf{b}_1 \rvert = \lvert \mathbf{b}_2 \rvert = \frac{4\pi}{a\sqrt{3}}. $$ -Unsurprisingly, we find that the lengths of the reciprocal lattice vectors are the same and that the reciprocal lattice has a reciprocal dependence on the lattice constant $a$. +Unsurprisingly, we find that the lengths of the reciprocal lattice vectors are equal and have inverse dependence on the lattice constant $a$. With $\lvert \mathbf{b}_2 \rvert$ and $\mathbf{a}_1 \perp \mathbf{b}_2$, we easily find $$ -\mathbf{b}_2 = \frac{4\pi}{a\sqrt{3}} \mathbf{\hat{y}} +\mathbf{b}_2 = \frac{4\pi}{a\sqrt{3}} \mathbf{\hat{y}}. $$ We follow the same procedure to find $\mathbf{b}_1$: @@ -304,7 +303,7 @@ $$ ??? Question "Is the choice of a set of reciprocal lattice vectors unique? If not, which other ones are possible?" No. As is the case for the real-space lattice vectors, the choice of a set of reciprocal lattice vectors is not unique. - There are multiple sets of reciprocal lattcie vectors that fullfil all criteria. + There are multiple sets of reciprocal lattice vectors that fulfill all criteria. The reciprocal lattice vectors that also fullfil the criteria are $$ \mathbf{b}_1 = \frac{4\pi}{a\sqrt{3}} \left(-\frac{\sqrt{3}}{2} \mathbf{\hat{x}} + \frac{1}{2}\mathbf{\hat{y}} \right) \quad \text{and} \quad \mathbf{b}_2 = -\frac{4\pi}{a\sqrt{3}} \mathbf{\hat{y}}. @@ -327,39 +326,38 @@ $$ \mathbf{b_3}=\frac{2\pi(\mathbf{a}_1\times\mathbf{a}_2)}{ \mathbf{a}_1\cdot(\mathbf{a}_2\times\mathbf{a_3})} $$ -Note that the denominator $V = \mathbf{a}_1\cdot(\mathbf{a}_2\times\mathbf{a_3})$ is the volume of the real-space unit cell spanned by the real-space lattice vectors $\mathbf{a}_1$, $\mathbf{a}_2$ and $\mathbf{a}_3$. -These definitions of the reciprocal lattice vectros are cyclic: $\mathbf{a}_1\cdot(\mathbf{a}_2\times\mathbf{a_3})=\mathbf{a}_2\cdot(\mathbf{a_3}\times\mathbf{a}_1)=\mathbf{a_3}\cdot(\mathbf{a}_1\times\mathbf{a}_2)$. +Note that the denominator $V = \mathbf{a}_1\cdot(\mathbf{a}_2\times\mathbf{a_3})$ is the volume of the real-space unit cell spanned by the lattice vectors $\mathbf{a}_1$, $\mathbf{a}_2$ and $\mathbf{a}_3$. +The definitions of the reciprocal lattice vectros are cyclic: $\mathbf{a}_1\cdot(\mathbf{a}_2\times\mathbf{a_3})=\mathbf{a}_2\cdot(\mathbf{a_3}\times\mathbf{a}_1)=\mathbf{a_3}\cdot(\mathbf{a}_1\times\mathbf{a}_2)$. ### The reciprocal lattice as a Fourier transform -One can also think of the reciprocal lattice as being a Fourier transform of the real-space lattice. -For simplicity, we illustrate this for a 1D lattice (the same principles can be applied to a 3D lattice). -We imagine the real-space lattice as a density function consisting of delta peaks: +One can also think of the reciprocal lattice as a Fourier transform of the real-space lattice. +For simplicity, we illustrate this for a 1D lattice (the same principles apply to a 3D lattice). +We model the real-space lattice as a density function consisting of delta peaks: $$ \rho(x)=\sum_{n} \delta(x-na) $$ -We take the Fourier transform of this function: +We take the Fourier transform of this function to find: $$ -{\mathcal F}_{k}\left[\rho(x)\right]=\int_\infty^\infty \mathrm{d}x\ \mathrm{e}^{ikx} \rho(x)=\sum_{n} \int_\infty^\infty \mathrm{d}x\ \mathrm{e}^{ikx} \delta(x-na)=\sum_{n} \mathrm{e}^{ikna} +{\mathcal F}_{k}\left[\rho(x)\right]=\int_{-\infty}^\infty \mathrm{d}x\ \mathrm{e}^{ikx} \rho(x)=\sum_{n} \int_{-\infty}^\infty \mathrm{d}x\ \mathrm{e}^{ikx} \delta(x-na)=\sum_{n} \mathrm{e}^{ikna} $$ This sum is non-zero only if $k=2\pi m/a$. -Therefore, we can rewrite this as: +If we recall the beginning of the lecture, then these points correspond to reciprocal lattice points $G$. +Therefore, we rewrite this into the form $$ -{\mathcal F}_{k}\left[\rho(x)\right]=\frac{2\pi}{|a|}\sum_{m} \delta\left(k-\frac{2\pi m}{a}\right) +{\mathcal F}_{k}\left[\rho(x)\right]=\frac{2\pi}{|a|}\sum_{m} \delta\left(k-G\right). $$ -However, in the beginning of the lecture we studied a 1D reciprocal lattice and saw that the reciprocal lattice points are given by $G = 2\pi m/a$. -Thus the values of $k$ lie on reciprocal lattice points and the Fourier tranform of the real-space lattice is thus a reciprocal lattice. -In other words, Fourier transforming a real-space lattice yields a reciprocal lattice! -The above can easily be generalized to three dimensions: +Therefore, we see that the Fourier transform is non-zero only at reciprocal lattice points. +In other words, Fourier transforming a real-space lattice yields a reciprocal lattice! +The above result generalizes directly to three dimensions: $$ -{\mathcal F}_\mathbf{k}\left[\rho(\mathbf{r})\right]=\int \mathrm{d}\mathbf{r}\ \mathrm{e}^{i\mathbf{k}\cdot\mathbf{r}} \rho(\mathbf{r}) = \sum_\mathbf{G}\delta(\mathbf{k}-\mathbf{G}), +{\mathcal F}_\mathbf{k}\left[\rho(\mathbf{r})\right]=\int \mathrm{d}\mathbf{r}\ \mathrm{e}^{i\mathbf{k}\cdot\mathbf{r}} \rho(\mathbf{r}) = \sum_\mathbf{G}\delta(\mathbf{k}-\mathbf{G}). $$ -with $\mathbf{G}$ being the reciprocal lattice. ### Periodicity of the reciprocal lattice -- GitLab