diff --git a/src/3_drude_model.md b/src/3_drude_model.md index 884758021789c3f9589de16cc4dbbfdc0cb0a090..f54f137389e4efc11784390f68e54fa89fdbf680 100644 --- a/src/3_drude_model.md +++ b/src/3_drude_model.md @@ -26,17 +26,20 @@ Ohm's law states that $V=IR=I\rho\frac{l}{A}$. In this lecture we will investiga - In-between scattering events electrons respond to the Lorentz force ${\bf F}_{\rm L}=-e\left({\bf E}+{\bf v}\times{\bf B}\right)$. ```python -import numpy as np +%matplotlib inline import matplotlib.pyplot as plt +import numpy as np +import matplotlib.animation as animation +from IPython.display import HTML -walker_number = 20 # number of particles +walkers = 20 # number of particles tau = 1 # relaxation time gamma = .3 # dissipation strength a = 1 # acceleration dt = .1 # infinitesimal T = 20 # simulation time -v = np.zeros((2, int(T // dt), walker_number), dtype=float) +v = np.zeros((2, int(T // dt), walkers), dtype=float) # scattering_events = np.random.binomial(1, dt/tau, size=v.shape[1:]) angles = np.random.uniform(high=2*np.pi, size=scattering_events.shape) * scattering_events @@ -59,9 +62,36 @@ r = np.cumsum(v * dt, axis=1) scattering_positions = np.copy(r) scattering_positions[:, ~scattering_events.astype(bool)] = np.nan -plt.plot(*r[:, :100], alpha=.5, c='#1f77b4'); -plt.scatter(*scattering_positions[:, :100], s=10); +fig = plt.figure() + +scatter_pts = scattering_positions[:, :100] +trace = r[:, :100] + +nz_scatters = tuple((np.hstack(scatter_pts[0])[~np.isnan(np.hstack(scatter_pts[0]))], + np.hstack(scatter_pts[1])[~np.isnan(np.hstack(scatter_pts[1]))])) + +plt.axis([min(nz_scatters[0])-1, + max(nz_scatters[0])+1, + min(nz_scatters[1])-1, + max(nz_scatters[1])+1]) + +lines = [] +scatterers = [] +for index in range(walkers): + lobj = plt.plot([],[], lw=1, color='b', alpha=0.5)[0] + lines.append(lobj) + scatterers.append(plt.scatter([], [], s=10, c='r')) + +def animate(i): + for lnum, line in enumerate(lines): + line.set_data(trace[0][:i, lnum], trace[1][:i, lnum]) + data = np.stack((scatter_pts[0][:i,lnum], scatter_pts[1][:i, lnum])).T + scatterers[lnum].set_offsets(data) +# +anim = animation.FuncAnimation(fig, animate, interval=100) plt.axis('off'); + +HTML(anim.to_html5_video()) ``` We start by considering only an electric field (_i.e._ ${\bf B}=0$). What velocity do electrons acquire in-between collisions?