From 3faec748dde1db179f019a9a6594a1f8652394a4 Mon Sep 17 00:00:00 2001 From: Bowy La Riviere <b.m.lariviere@student.tudelft.nl> Date: Thu, 18 Feb 2021 22:25:12 +0000 Subject: [PATCH] Updates some answers --- src/4_sommerfeld_model_solutions.md | 29 +++++++++++++++++------------ 1 file changed, 17 insertions(+), 12 deletions(-) diff --git a/src/4_sommerfeld_model_solutions.md b/src/4_sommerfeld_model_solutions.md index 0538b1bd..85dd28bd 100644 --- a/src/4_sommerfeld_model_solutions.md +++ b/src/4_sommerfeld_model_solutions.md @@ -40,21 +40,21 @@ Comparing total and free electron density, only few electrons are available for 2. $$ -g_{1D}(k)dk = \left(\frac{L}{2\pi}\right) 2 \mathrm{d} k +g_{1D}(k)\textrm{d} k = \left(\frac{L}{2\pi}\right) 2 \mathrm{d} k $$ The factor 2 is due to positive and negative $k$-values having equal enery $$ -g_{2D}(k)dk = \left(\frac{L}{2\pi}\right)^2 2\pi k \mathrm{d} k +g_{2D}(k)\textrm{d} k = \left(\frac{L}{2\pi}\right)^2 2\pi k \mathrm{d} k $$ $$ -g_{3D}(k)dk = \left(\frac{L}{2\pi}\right)^3 4\pi k^2 \mathrm{d} k +g_{3D}(k)\textrm{d} k = \left(\frac{L}{2\pi}\right)^3 4\pi k^2 \mathrm{d} k $$ 3. $$ \begin{align} -g(k)dk &= \left(\frac{L}{2\pi}\right)^n S_{n-1}(k)dk \\ -&= \left(\frac{L}{2\pi}\right)^n \frac{2\pi^{\frac{n}{2}}k^{n-1}}{\Gamma(\frac{n}{2})}dk +g(k)\textrm{d} k &= \left(\frac{L}{2\pi}\right)^n S_{n-1}(k)\textrm{d} k \\ +&= \left(\frac{L}{2\pi}\right)^n \frac{2\pi^{\frac{n}{2}}k^{n-1}}{\Gamma(\frac{n}{2})}\textrm{d} k \end{align} $$ @@ -62,10 +62,10 @@ $$ 5. $$ -g(\varepsilon)d\varepsilon = 2_s g(k) dk +g(\varepsilon)\textrm{d} \varepsilon = 2_s g(k) \textrm{d} k $$ $$ -g(\varepsilon)=2_sg(k(\varepsilon))\frac{dk}{d\varepsilon} +g(\varepsilon)=2_sg(k(\varepsilon))\frac{\textrm{d} k}{\textrm{d} \varepsilon} $$ $$ g(\varepsilon) = \frac{2_s}{\Gamma(\frac{n}{2})}\left(\frac{L}{\hbar}\sqrt{\frac{m}{2\pi}}\right)^n (\varepsilon)^{\frac{n}{2}-1} @@ -73,24 +73,29 @@ $$ 6. $$ -N = \int_{0}^{\infty}g(\varepsilon)n_F(\beta(\varepsilon-\mu))d\varepsilon = \frac{2}{\Gamma(\frac{n}{2})}\left(\frac{L}{\hbar}\sqrt{\frac{m}{2\pi}}\right)^n\int_{0}^{\infty}\frac{(\varepsilon)^{\frac{n}{2}-1}}{e^{\frac{\varepsilon-\mu}{k_BT}}+1}d\varepsilon +N = \int_{0}^{\infty}g(\varepsilon)n_F(\beta(\varepsilon-\mu))\textrm{d} \varepsilon = \frac{2}{\Gamma(\frac{n}{2})}\left(\frac{L}{\hbar}\sqrt{\frac{m}{2\pi}}\right)^n\int_{0}^{\infty}\frac{(\varepsilon)^{\frac{n}{2}-1}}{e^{\frac{\varepsilon-\mu}{k_BT}}+1}\textrm{d} \varepsilon $$ -Total energy: $E = \int_{0}^{\infty} g(\varepsilon) n_{F}(\beta (\varepsilon - \mu)) \varepsilon d\varepsilon $ +Total energy: $E = \int_{0}^{\infty} g(\varepsilon) n_{F}(\beta (\varepsilon - \mu)) \varepsilon \textrm{d} \varepsilon $ ### Exercise 3: a hypothetical material 1. $$ -E = \int_{0}^{\infty}\varepsilon g(\varepsilon)f(\varepsilon)d\varepsilon = 2.10^{10}\int_{0}^{\infty}\frac{\varepsilon^{\frac{3}{2}}}{e^\frac{\varepsilon-5.2}{k_BT}+1}d\varepsilon +E = \int_{0}^{\infty}\varepsilon g(\varepsilon) n_{F}(\beta (\varepsilon - \mu)) \textrm{d} \varepsilon = 2.10^{10}eV^{-\frac{3}{2}} \int_{0}^{\infty}\frac{\varepsilon^{\frac{3}{2}}}{e^\frac{\varepsilon-5.2}{k_BT}+1} \textrm{d} \varepsilon $$ 2. -Substitute T=0 in the integral expression for total energy to find the ground state energy. +$$ +E = \frac{4}{5} (5.2)^{\frac{5/2}} 10^{10} eV +$$ 3. $$ -\Delta E = \frac{\pi^2}{6}(k_B T)^2\frac{\partial}{\partial \varepsilon}\left(\varepsilon g(\varepsilon)\right)\bigg|_{\varepsilon=\varepsilon _F} +\begin{align} +E(T)-E(T=0) &= \frac{\pi^2}{6}(k_B T)^2\frac{\partial}{\partial \varepsilon}\left(\varepsilon g(\varepsilon)\right)\bigg|_{\varepsilon=\varepsilon _F}\\ +&\approx 8.356 10^8 eV +\end{align} $$ 5. -- GitLab