diff --git a/src/1_einstein_model.md b/src/1_einstein_model.md index 6ab797f000a047cbe7a25ff3390dfeb1ee91a7ca..4da962dbfc2bff72e41cd0169a7e18d207bbd2d6 100644 --- a/src/1_einstein_model.md +++ b/src/1_einstein_model.md @@ -254,7 +254,7 @@ ax.set_yticklabels(['$1$', '$2$']) draw_classic_axes(ax, xlabeloffset=.2) ax.text(1.05, 0.95, r'$\hbar \omega = k_{\rm B}T$', ha='left', color='r'); temps = np.linspace(0.01, 2) -ax2.plot(temps, 1/2 + 1/(np.exp(1/temps)-1), '-', xline, yline, 'r--') +ax2.plot(temps, 1/2 + 1/(np.exp(1/temps)-1), '-', [1,1], [0, 1.1], 'r--') ax2.set_ylim(bottom=0) ax2.set_xlabel('$k_B T$') ax2.set_xticks([0, 1]) @@ -263,7 +263,7 @@ ax2.set_ylabel(r"$\langle E \rangle$") ax2.set_yticks([1/2]) ax2.set_yticklabels([r'$\hbar\omega_0/2$']) draw_classic_axes(ax2, xlabeloffset=.15) -ax2.text(1.05, 0.75, r'$k_{\rm B}T=\hbar \omega_0$', ha='left', color='r'); +ax2.text(1.05, 0.65, r'$k_{\rm B}T=\hbar \omega_0$', ha='left', color='r'); ``` We now calculate the heat capacity per atom $C$ explicitly. To do so, we need to differentiate $\langle E \rangle$ with respect to $T$.