From 53e423bfc9c0d247ba0ab94c94bb4973a61f217b Mon Sep 17 00:00:00 2001 From: Anton Akhmerov <anton.akhmerov@gmail.com> Date: Sat, 31 Mar 2018 13:50:10 +0200 Subject: [PATCH] add the first semiconductor lecture --- README.md | 2 +- SUMMARY.md | 2 +- lecture_2.md | 18 ++++++++++++++++++ 3 files changed, 20 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index e42b4c1b..7934bb70 100644 --- a/README.md +++ b/README.md @@ -26,7 +26,7 @@ (based on chapters 15–16) Exercises 15.1, 15.3, 15.4, 16.1, 16.2 -* Week 7: Semiconductors +* Week 7: [Semiconductors](lecture_7.md) (based on chapters 17–18) * Week 8: Magnetism diff --git a/SUMMARY.md b/SUMMARY.md index 418258c9..9a5b3193 100644 --- a/SUMMARY.md +++ b/SUMMARY.md @@ -6,5 +6,5 @@ * [Electrons and phonons in 1D](lecture_4.md) * [Crystal structure and diffraction](lecture_5.md) * [Tight binding and nearly free electrons](lecture_6.md) -* Semiconductors +* [Semiconductors](lecture_7.md) * Magnetism diff --git a/lecture_2.md b/lecture_2.md index 6011076e..e51fc59c 100644 --- a/lecture_2.md +++ b/lecture_2.md @@ -186,3 +186,21 @@ $$  The orange circle represents the Fermi surface at finite current $\rightarrow$ this circle will shift only slightly before the electrons reach terminal velocity $\rightarrow$ all transport takes place near the Fermi surface. + +## Useful trick: scaling of $C_V$ + +Behavior of $C_V$ can be very quickly memorized or understood using the following mnemonic rule + +> Particles with energy $E \leq kT$ are thermally excited, and each carries extra energy $kT$. + +#### Example 1: electrons + +$g(E_F)$ roughly constant ⇒ total energy in the thermal state is $T \times [T\times g(E_F)]$ ⇒ $C_V \propto T$. + +#### Example 2: graphene with $E_F=0$ (midterm 2018) + +$g(E) \propto E$ ⇒ total energy is $T \times T^2$ ⇒ $C_V \propto T^2$. + +#### Example 3: phonons in 3D at low temperatures. + +$g(E) \propto E^2$ ⇒ total energy is $T \times T^3$ ⇒ $C_V \propto T^3$. \ No newline at end of file -- GitLab