diff --git a/docs/2_debye_model_solutions.md b/docs/2_debye_model_solutions.md index c93a234d42dbd3b853d7e25d4f03284a2c7fe21a..0d9bbff3106e34fa1a8a02430b2f02b8f26909bc 100644 --- a/docs/2_debye_model_solutions.md +++ b/docs/2_debye_model_solutions.md @@ -95,7 +95,7 @@ ax.legend(); 1. The energy stored in the vibrational modes of a two-dimensional Debye solid is: \begin{align*} - E & = \int_0^{\infty}(n_B(\omega(\mathbf{k}))+\frac{1}{2})\hbar\omega(\mathbf{k}) d\mathbf{k} \\ + E & = 2_p \frac{L^2}{4\pi^2}\int_0^{\infty}(n_B(\omega(\mathbf{k}))+\frac{1}{2})\hbar\omega(\mathbf{k}) d\mathbf{k} \\ & = \frac{L^2}{\pi v^2\hbar^2\beta^3}\int_{0}^{\beta\hbar\omega_D}\frac{x^2}{e^{x} - 1}dx + E_0 \end{align*}