From 6e4639ce4b54b163a9489cd744badc362e0591b2 Mon Sep 17 00:00:00 2001 From: "T. van der Sar" <t.vandersar@tudelft.nl> Date: Mon, 7 Mar 2022 10:59:40 +0000 Subject: [PATCH] Update 7_tight_binding_model_solutions.md - plot fix 1st attempt --- docs/7_tight_binding_model_solutions.md | 80 ++++++++++++------------- 1 file changed, 37 insertions(+), 43 deletions(-) diff --git a/docs/7_tight_binding_model_solutions.md b/docs/7_tight_binding_model_solutions.md index 02ac1980..f7b00b83 100644 --- a/docs/7_tight_binding_model_solutions.md +++ b/docs/7_tight_binding_model_solutions.md @@ -36,39 +36,30 @@ $$ m^* = m_e, $$ -where $m_e$ is the free electron mass. This is expected because the free elctrons are not subject to a potential +where $m_e$ is the free electron mass. This is expected because the free electrons are not subject to a potential #### Question 5. -If the dispersion relation is parabolic, so in the free electron model. +The effective mass is given by the curvature of the dispersion. Therefore, if the dispersion has a constant curvature, the effective mass is the same for all $k-$values. This is the case for the purely parabolic dispersion $\epsilon(k)\propto^2$ of the free electron model ## Exercise 1: Lattice vibrations #### Question 1. The group velocity is given by -\begin{align} -v_g(k)&=\frac{\partial \omega(k)}{\partial k}\\ -&= a \sqrt{\frac{\kappa}{m}}\cos(\frac{ka}{2}) \frac{\sin(ka/2)}{|\sin(ka/2)|}, -\end{align} -which can be written as $$ -v_g = a \sqrt{\frac{\kappa}{m}} -\begin{cases} - &\cos(\frac{ka}{2}), 0<ka<\pi\\ - &-\cos(\frac{ka}{2}), -\pi<ka<0 -\end{cases} +v_g(k)=\frac{\partial \omega(k)}{\partial k} = a \sqrt{\frac{\kappa}{m}}\cos(\frac{ka}{2}) \text{sign}(k), $$ - +where $\text{sign}(k)$ represents the sign of $k$. #### Question 2. The density of states is -\begin{align} -g(\omega) &= \frac{L}{\pi} \left|\frac{1}{v_g}\right| \\ -&= \frac{L}{a \pi} \sqrt{\frac{m}{\kappa}}\frac{1}{\cos(ka/2)}\\ -&= \frac{L}{a \pi} \sqrt{\frac{m}{\kappa}}\frac{1}{\sqrt{1-\sin^2(ka/2)}}\\ -&=\frac{2L}{a \pi} \frac{1}{\sqrt{4\kappa / m - \omega^2}}, -\end{align} +$$ +g(\omega) = \frac{L}{\pi} \left|\frac{1}{v_g}\right| += \frac{L}{a \pi} \sqrt{\frac{m}{\kappa}}\frac{1}{\cos(ka/2)} += \frac{L}{a \pi} \sqrt{\frac{m}{\kappa}}\frac{1}{\sqrt{1-\sin^2(ka/2)}} +=\frac{2L}{a \pi} \frac{1}{\sqrt{4\kappa / m - \omega^2}}, +$$ where we substituted back the dispersion relation. #### Question 3. @@ -109,29 +100,40 @@ Hint: The group velocity is given as $v = \frac{d\omega}{dk}$, draw a coordinate #### Question 1. -For the energy we have: $$\langle E \rangle = \int \hbar \omega g(\omega) (n_{BE}(\hbar \omega) + \frac{1}{2})d\omega$$ with $g(\omega)$ being the DOS calculated in exercise 1 and $n_{BE}(\hbar \omega) = \frac{1}{e^{\hbar\omega/k_BT}-1}$. +For the energy we have: +$$ +U = \int \hbar \omega g(\omega) (n_{BE}(\hbar \omega) + \frac{1}{2})d\omega +$$ +with $g(\omega)$ the density of states calculated in exercise 1 and $n_{BE}(\hbar \omega) = \frac{1}{e^{\hbar\omega/k_BT}-1}$ the Bose-Einstein distribution. #### Question 2. - -For the heat capacity we have: $$C = \frac{d \langle E \rangle}{d T} = \int g(\omega) \hbar\omega \frac{d n_{BE}(\hbar \omega)}{d T}d\omega$$ +For the heat capacity we have: +$$ +C = \frac{d U }{d T} = \int g(\omega) \hbar\omega \frac{d n_{BE}(\hbar \omega)}{d T}d\omega +$$ ## Exercise 3: Next-nearest neighbors chain #### Question 1. - -The Schrödinger equation is given by: $|\Psi\rangle = \sum_n \phi_n |n\rangle$ such that we find $$ E\phi_n = E_0\phi_n - t\phi_{n-1} - t\phi_{n+1} - t'\phi_{n-2} - t'\phi_{n+2}$$ +The Schrödinger equation is $H|\Psi\rangle = E|\Psi\rangle$. The wavefunction is $|\Psi\rangle = \sum_m \phi_m |m\rangle$. By calculating $\langle n |H|\Psi\rangle$, we find +$$ +E\phi_n = E_0\phi_n - t\phi_{n-1} - t\phi_{n+1} - t'\phi_{n-2} - t'\phi_{n+2} +$$ #### Question 2. - - -Solving the Schrödinger equation yields dispersion: $$E(k) = E_0 -2t\cos(ka) -2t'\cos(2ka)$$ +We solve the previous equation using the Ansatz $\phi_n=e^{ikna}\phi_0$. Doing so, we find the dispersion relation: +$$ +E(k) = E_0 - 2t\cos(ka) - 2t'\cos(2ka) +$$ #### Question 3. - -$$m^* = \frac{\hbar^2}{2a^2}\frac{1}{t\cos(ka)+4t'\cos(2ka)}$$ +The effective mass is +$$ +m^* = \frac{\hbar^2}{2a^2}\frac{1}{t\cos(ka)+4t'\cos(2ka)} +$$ Plot for t=t': @@ -152,36 +154,28 @@ pyplot.tight_layout(); #### Question 4. -Plots for 2t'=t, 4t'=t and 10t'=t: +Plots for $t=2t'$, $t=4t'$, and $t=10t'$: ```python def m(k,t): - return 1/(np.cos(k)+4*t*np.cos(2*k)) + return 1/(t*np.cos(k)+4*np.cos(2*k)) -k1 = np.linspace(-1.6, -0.83, 300); -k2 = np.linspace(-0.826, 0.826, 300); -k3 = np.linspace(0.83, 1.6, 300); +k1 = np.linspace(-pi, -pi/2-0.01, 300); +k2 = np.linspace(-pi/2+0.01, pi/2-0.01, 300); +k3 = np.linspace(pi/2+0.01, pi, 300); pyplot.plot(k1, m(k1,2),'b'); pyplot.plot(k2, m(k2,2),'b'); pyplot.plot(k3, m(k3,2),'b',label='t=2t\''); pyplot.xlabel('$k$'); pyplot.ylabel('$m_{eff}(k)$'); -pyplot.xticks([-1.6,0,1.6],[r'$-\pi/a$',0,r'$\pi/a$']); +pyplot.xticks([-pi,0,pi],[r'$-\pi/a$',0,r'$\pi/a$']); pyplot.yticks([0],[]); pyplot.tight_layout(); -k1 = np.linspace(-1.58, -0.81, 300); -k2 = np.linspace(-0.804, 0.804, 300); -k3 = np.linspace(0.81, 1.58, 300); - pyplot.plot(k1, m(k1,4),'r'); pyplot.plot(k2, m(k2,4),'r'); pyplot.plot(k3, m(k3,4),'r',label='t=4t\''); -k1 = np.linspace(-1.575, -0.798, 300); -k2 = np.linspace(-0.790, 0.790, 300); -k3 = np.linspace(0.798, 1.575, 300); - pyplot.plot(k1, m(k1,10),'k'); pyplot.plot(k2, m(k2,10),'k'); pyplot.plot(k3, m(k3,10),'k',label='t=10t\''); -- GitLab