diff --git a/src/3_drude_model.md b/src/3_drude_model.md index c335735be0880a37e18e906759f89674ca3011d8..e596f6ff94e4225aec9dda7c2bd2f1da6c233f64 100644 --- a/src/3_drude_model.md +++ b/src/3_drude_model.md @@ -85,7 +85,7 @@ where $R_{\rm H}=-\frac{1}{ne}$ is the _Hall coefficient. So by measuring the Ha While most materials have $R_{\rm H}>0$, interestingly some materials are found to have $R_{\rm H}<0$. This would imply that the charge carriers either have a positive charge, or a negative mass. We will see later (chapter 17) how to interpret this. ## Exercises -### Exercise 1 +### Exercise 1: Extracting quantities from basic Hall measurements We apply a magnetic field $\bf B$ perpendicular to a planar sample that sits in the $xy$ plane. The sample has width $W$ in the $y$-direction, length $L$ in the $x$-direction and we apply a current $I$ along $x$. 1. Suppose we measure a Hall voltage $V_H$. Express the Hall resistance $R_{xy} = V_H/I$ in terms of the Hall resistivity $\rho_{xy}$. Also express $R_{xy}$ in terms of the Hall coefficient $R_H$.