From 9401a34b2943269ae35b68cfae1f69b9c23878f3 Mon Sep 17 00:00:00 2001
From: "T. van der Sar" <t.vandersar@tudelft.nl>
Date: Sun, 22 Mar 2020 14:44:51 +0000
Subject: [PATCH] Update 11_nearly_free_electron_model.md - typo

---
 src/11_nearly_free_electron_model.md | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

diff --git a/src/11_nearly_free_electron_model.md b/src/11_nearly_free_electron_model.md
index 6904f8a8..c4999347 100644
--- a/src/11_nearly_free_electron_model.md
+++ b/src/11_nearly_free_electron_model.md
@@ -58,7 +58,7 @@ Bloch theorem is extremely similar to the ansatz we used in [1D](7_tight_binding
 
 ## Nearly free electron model
 
-In the free electron model, the dispersion is $E = \hbar^2 |\mathbf{k}|^2/2m$ and the corresponding eigenfunctions $|\mathbf{k}\rangle$ are plane waves with a real-space representation $\psi=\langle\mathbf{R}|\mathbf{k}\rangle= e^{i\mathbf{k}\cdot \mathbf{R}}$. We note that in the free electron model,
+In the free electron model, the dispersion is $E = \hbar^2 |\mathbf{k}|^2/2m$ and the corresponding eigenfunctions $|\mathbf{k}\rangle$ are plane waves with a real-space representation $\psi=\langle\mathbf{r}|\mathbf{k}\rangle= e^{i\mathbf{k}\cdot \mathbf{r}}$. We note that in the free electron model,
 
 * there is only one band
 * the band structure is not periodic in $k$-space
-- 
GitLab