diff --git a/src/2_debye_model_solutions.md b/src/2_debye_model_solutions.md
index 61621dfabb2f104e6f0055de1432327cfdb0ad9d..71708ec430ee1962f2c8c2819334e9adee13f0b0 100644
--- a/src/2_debye_model_solutions.md
+++ b/src/2_debye_model_solutions.md
@@ -78,7 +78,7 @@ For 1D we have that $N = \frac{L}{2\pi}\int_{-k}^{k} dk$, hence $g(\omega) = \fr
 
 For 2D we have that $N = 2\left(\frac{L}{2\pi}\right)^2\int d^2k = 2\left(\frac{L}{2\pi}\right)^2\int 2\pi kdk$, hence $g(\omega) = \frac{L^2\omega}{\pi v^2}$.
 
-For 3D we have that $N = 3\left(\frac{L}{2\pi}\right)^3\int d^3k = 3\left(\frac{L}{2\pi}\right)^3\int 4\pi kdk$, hence $g(\omega) = \frac{3L^3\omega^2}{2\pi^2v^3}$.
+For 3D we have that $N = 3\left(\frac{L}{2\pi}\right)^3\int d^3k = 3\left(\frac{L}{2\pi}\right)^3\int 4\pi k^2dk$, hence $g(\omega) = \frac{3L^3\omega^2}{2\pi^2v^3}$.
 
 ###  Exercise 2: Debye model in 2D.