From 964adf831d6db905263f4fb1d1260bbb21078ebc Mon Sep 17 00:00:00 2001 From: Bowy La Riviere <b.m.lariviere@student.tudelft.nl> Date: Fri, 12 Feb 2021 11:57:25 +0000 Subject: [PATCH] fixes k dependence error --- src/2_debye_model_solutions.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/2_debye_model_solutions.md b/src/2_debye_model_solutions.md index 61621dfa..71708ec4 100644 --- a/src/2_debye_model_solutions.md +++ b/src/2_debye_model_solutions.md @@ -78,7 +78,7 @@ For 1D we have that $N = \frac{L}{2\pi}\int_{-k}^{k} dk$, hence $g(\omega) = \fr For 2D we have that $N = 2\left(\frac{L}{2\pi}\right)^2\int d^2k = 2\left(\frac{L}{2\pi}\right)^2\int 2\pi kdk$, hence $g(\omega) = \frac{L^2\omega}{\pi v^2}$. -For 3D we have that $N = 3\left(\frac{L}{2\pi}\right)^3\int d^3k = 3\left(\frac{L}{2\pi}\right)^3\int 4\pi kdk$, hence $g(\omega) = \frac{3L^3\omega^2}{2\pi^2v^3}$. +For 3D we have that $N = 3\left(\frac{L}{2\pi}\right)^3\int d^3k = 3\left(\frac{L}{2\pi}\right)^3\int 4\pi k^2dk$, hence $g(\omega) = \frac{3L^3\omega^2}{2\pi^2v^3}$. ### Exercise 2: Debye model in 2D. -- GitLab