From a74c444d3b0615dd3471b062086a6de7541d6eba Mon Sep 17 00:00:00 2001 From: "T. van der Sar" <t.vandersar@tudelft.nl> Date: Wed, 12 Feb 2020 05:47:26 +0000 Subject: [PATCH] Update 2_debye_model.md - wrote sound velocity as v_s everywhere --- src/2_debye_model.md | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/src/2_debye_model.md b/src/2_debye_model.md index 2eb1037c..e84bd319 100644 --- a/src/2_debye_model.md +++ b/src/2_debye_model.md @@ -98,11 +98,11 @@ All wave vectors are points in _reciprocal space_ or _k-space_. These waves don't all have the same frequency $\omega_0$ as the atoms did have in the Einstein model, but rather a _dispersion relation_ $$ -\omega = v|\mathbf{k}|. +\omega = v_{\rm s}|\mathbf{k}|. $$ -Here $v$ is the *sound velocity*. +Here $v_{\rm s}$ is the *sound velocity*. -Now instead of $3N$ oscillators with the same frequency we have many oscillators with different frequencies $\omega(k) = v|\mathbf{k}|$. The total energy is given by the sum over the energies of all the oscillators: +Now instead of $3N$ oscillators with the same frequency we have many oscillators with different frequencies $\omega(k) = v_{\rm s}|\mathbf{k}|$. The total energy is given by the sum over the energies of all the oscillators: $$ E=\sum_\mathbf{k} \left(\frac{1}{2}\hbar\omega(\mathbf{k})+\frac{\hbar\omega(\mathbf{k})}{ {\rm e}^{\hbar\omega(\mathbf{k})/{k_{\rm B}T}}-1}\right) @@ -158,7 +158,7 @@ Continuing with our calculation of the total energy, we get: $$ \begin{align} E &= \frac{L^3}{(2\pi)^3}\iiint\limits_{-∞}^{∞}dk_x dk_y dk_z × 3×\left(\frac{1}{2}\hbar\omega(\mathbf{k})+\frac{\hbar\omega(\mathbf{k})}{ {\rm e}^{\hbar\omega(\mathbf{k})/{k_{\rm B}T}}-1}\right),\\ -\omega(\mathbf{k}) &= v\sqrt{k_x^2 + k_y^2 + k_z^2}. +\omega(\mathbf{k}) &= v_{\rm s}\sqrt{k_x^2 + k_y^2 + k_z^2}. \end{align} $$ The factor $3$ accounts for three possible directions of displacement (wave polarizations). @@ -185,7 +185,7 @@ E = ∫\limits_0^∞\left(\frac{1}{2}\hbar\omega+\frac{\hbar\omega}{ {\rm e}^{\h $$ with $$ -g(ω) = \frac{L^3}{(2\pi)^3}×4 π × 3 × v^{-3} × \omega^2. +g(ω) = \frac{L^3}{(2\pi)^3}×4 π × 3 × v_{\rm s}^{-3} × \omega^2. $$ We can trace back all the factors in the density of states to their origin: @@ -199,7 +199,7 @@ We can trace back all the factors in the density of states to their origin: ## Low $T$ -Using $g(\omega)=V\omega^2/2\pi^2v^3$, the total energy becomes: +Using $g(\omega)=V\omega^2/2\pi^2v_{\rm s}^3$, the total energy becomes: $$ E=E_{\rm Z}+\frac{3V}{2\pi^2 v_{\rm s}^3}\int\limits_0^\infty\left(\frac{\hbar\omega}{ {\rm e}^{\hbar\omega/k_{\rm B}T}-1}\right)\omega^2{\rm d}\omega$$ @@ -217,9 +217,9 @@ Therefore we conclude that $C=\frac{ {\rm d}E}{ {\rm d}T}\propto T^3$. Can we understand this without calculating any terms? Turns out we can! 1. At temperature $T$ only modes with $\hbar \omega \lesssim k_B T$ get thermally excited. -2. These modes have wave vectors $|k| \lesssim k_B T /\hbar v$. Therefore their total number is proportional to the volume of a sphere with radius $|k|$ multiplied by the density of modes in $k$-space. This gives us $N_\textrm{modes} \sim (k_B T L/\hbar v)^3$. +2. These modes have wave vectors $|k| \lesssim k_B T /\hbar v{\rm s}$. Therefore their total number is proportional to the volume of a sphere with radius $|k|$ multiplied by the density of modes in $k$-space. This gives us $N_\textrm{modes} \sim (k_B T L/\hbar v{\rm s})^3$. 3. As these modes are thermally excited, they behave like classical harmonic oscillators and contribute $\sim k_B$ to the heat capacity each (similar to the Einstein model). -4. Multiplying $N_\textrm{modes}$ by the contribution of each mode, we obtain $C\propto k_B (k_B T L/\hbar v)^3$. +4. Multiplying $N_\textrm{modes}$ by the contribution of each mode, we obtain $C\propto k_B (k_B T L/\hbar v{\rm s})^3$. ## Debye's interpolation for medium $T$ -- GitLab