From b9840b68687d47e6d42eead2d182fe60c902fddb Mon Sep 17 00:00:00 2001 From: "T. van der Sar" <t.vandersar@tudelft.nl> Date: Wed, 12 Feb 2020 09:21:57 +0000 Subject: [PATCH] Update 2_debye_model.md - typo --- src/2_debye_model.md | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/src/2_debye_model.md b/src/2_debye_model.md index 3fc73951..ab2cbab0 100644 --- a/src/2_debye_model.md +++ b/src/2_debye_model.md @@ -129,7 +129,7 @@ Periodic boundary conditions imply that the atomic displacement $\mathbf{\delta $$ \mathbf{\delta r}(\mathbf{r} + L\mathbf{\hat{x}}) = \mathbf{\delta r}(\mathbf{r}) $$ -To satisfy this equation, we arrive at the condition $k_x=p 2 \pi/L$]$, with $p= ..., -2, -1, 0, 1, 2$ in $\mathbb{Z}$. +To satisfy this equation, we arrive at the condition $k_x=p 2 \pi/L]$, with $p= ..., -2, -1, 0, 1, 2$ in $\mathbb{Z}$. We see that periodicity implies that not all the points in $k$-space are allowed. Instead only waves for which each component $k_x, k_y, k_z$ of the $\mathbf{k}$-vector belongs to the set @@ -140,7 +140,7 @@ In 3D the allowed $k$-vectors form a regular grid:  -There is therefore exactly one allowed ${\bf k}$ per volume $\left(\frac{2\pi}{L}\right)^3$ in reciprocal space. +There is therefore exactly one allowed ${\bf k}$-value per volume $\left(\frac{2\pi}{L}\right)^3$ in reciprocal space. When we consider larger and larger box sizes $L→∞$, the volume per allowed mode becomes smaller and smaller, and eventually we obtain an integral: $$ @@ -150,7 +150,7 @@ $$ ## Density of states -Continuing with our calculation of the total energy, we get: +Let's use this knowledge and continue our calculation of the total energy: $$ \begin{align} E &= \frac{L^3}{(2\pi)^3}\iiint\limits_{-∞}^{∞}dk_x dk_y dk_z × 3×\left(\frac{1}{2}\hbar\omega(\mathbf{k})+\frac{\hbar\omega(\mathbf{k})}{ {\rm e}^{\hbar\omega(\mathbf{k})/{k_{\rm B}T}}-1}\right),\\ -- GitLab